Montelukast sodium (Singulair), also known as MK-0476 (1-(((1(R)-(3-(2-(7-chloro-2-quinolinyl)-(E)-ethenyl)phenyl)(3-2-(1- hydroxy-1-methylethyl)phenyl)propyl)thio)methyl)cyclopropane) acetic acid sodium salt, is a potent and selective inhibitor of [3H]leukotriene D4 specific binding in guinea pig lung (Ki 0.18 +/- 0.03 nM), sheep lung (Ki 4 nM), and dimethylsulfoxide-differentiated U937 cell plasma membrane preparations (Ki 0.52 +/- 0.23 nM), but it was essentially inactive versus [3H]leukotriene C4 specific binding in dimethylsulfoxide-differentiated U937 cell membranes (IC50 10 microM) and [3H]leukotriene B4 specific binding in THP-1 cell membranes (IC50 40 microM). Montelukast also inhibited specific binding of [3H]leukotriene D4 to guinea pig lung in the presence of human serum albumin, human plasma, and squirrel monkey plasma with Ki values of 0.21 +/- 0.08, 0.19 +/- 0.02, and 0.26 +/- 0.02 nM, respectively. Functionally, montelukast antagonized contractions of guinea pig trachea induced by leukotriene D4 (pA2 value 9.3; slope 0.8). In contrast, montelukast (16 microM) failed to antagonize contractions of guinea pig trachea induced by leukotriene C4 (45 mM serine-borate), serotonin, acetylcholine, histamine, prostaglandin D2, or U-44069. Intravenous montelukast antagonized bronchoconstriction induced in anesthetized guinea pigs by i.v. leukotriene D4 but did not block bronchoconstriction to arachidonic acid, histamine, serotonin, or acetylcholine. Oral administration of montelukast blocked leukotriene D4 induced bronchoconstriction in conscious squirrel monkeys, ovalbumin-induced bronchoconstriction in conscious sensitized rats (ED50 0.03 +/- 0.001 mg/kg; 4 h pretreatment), and also ascaris-induced early and late phase bronchoconstriction in conscious squirrel monkeys (0.03-0.1 mg/kg; 4 h pretreatment). A continuous i.v. infusion of montelukast (8 micrograms.kg-1.min-1) resulted in a 70% decrease in the peak early response and a 75% reduction of the late response to ascaris aerosol in allergic conscious sheep. Montelukast, a potent and selective leukotriene D4 receptor antagonist with excellent in vivo activity is currently in clinical development for the treatment of asthma and related diseases.
The effect of poly(ADP‐ribose) synthesis on chromatin structure was investigated by velocity sedimentation and electron microscopy. We demonstrate that locally relaxed regions can be generated within polynucleosome chains by the activity of their intrinsic poly(ADP‐ribose)polymerase. This relaxation phenomenon is also shown to be NAD dependent and to be correlated with the formation of hyper(ADP‐ribosyl)ated forms of histone H1. Evidence is also presented which suggests that hyper(ADP‐ribosyl)ated histone H1 is neither released from the relaxed chromatin, nor does it seem to participate in polynucleosomal aggregation.
We have studied the kinetics of relaxation of poly(ADP-ribosyl)ated polynucleosomes produced by endogenous enzyme activity by comparing the generation of hyper(ADP-ribosyl)ated histone H1 and its effect on the chromatin structure as revealed by electron microscopy. A correlation can be established between the appearance of histone H1 modified forms and the localized relaxation of the chromatin. We have also noticed, in parallel, that poly(ADP-ribosyl)ated chromatin showed increased solubility in the presence of Mg2+ and 0.2 M NaCl. Electron microscopic examination of the solubilized chromatin produced by poly(ADP-ribosyl)ation shows polynucleosomes exhibiting more relaxed conformation, whereas an increasing amount of hyper(ADP-ribosyl)ated histone H1 is found in the pellet, as shown by acid-urea-polyacrylamide electrophoretic separation of histone extracts.
Verlukast (MK-679) (3-[(3-(2-(7-chloro-2-quinolinyl)-(E)-ethenyl)phenyl)[3-(dimethylamino)- 3- oxopropyl)thio)methyl)-thio)propionic acid) is a potent and selective inhibitor of [3H]leukotriene D4 binding in guinea-pig (IC50 = 3.1 +/- 0.5 nM) and human (IC50 = 8.0 +/- 3.0 nM) lung homogenates and dimethyl sulfoxide differentiated U937 cell membrane preparations (IC50 = 10.7 +/- 1.6 nM) but is essentially inactive versus [3H]leukotriene C4 binding in guinea-pig lung homogenates (IC50 values of 19 and 33 microM). Functionally, when tested at 60 nM, it antagonized contractions of guinea-pig trachea (GPT) induced by leukotriene C4, leukotriene D4, and leukotriene E4 (respective-log KB values of 8.6, 8.8, and 8.9) and contractions of human trachea (HT) induced by leukotriene D4 (-log KB value 8.3 +/- 0.2). In contrast, verlukast (20-200 nM) failed to antagonize contractions of GPT induced by leukotriene C4 in the presence of 45 mM L-serine borate. Intravenous (i.v.) and aerosol verlukast antagonized bronchoconstriction (BC) induced in anaesthetized guinea pigs by i.v. leukotriene D4 but did not block BC to arachidonic acid or histamine. Intraduodenal verlukast (0.25 mg/kg) antagonized leukotriene D4 (0.2 micrograms/kg) induced BC in guinea pigs. Oral and aerosol administration blocked leukotriene D4-induced BC in conscious squirrel monkeys. Orally administered compound also blocked ovalbumin-induced BC in conscious sensitized rats treated with methysergide (3 micrograms/kg). The pharmacological profile for verlukast is similar to that of the racemic compound, MK-571. Verlukast is currently in clinical development for the treatment of asthma and related diseases.
The enantiomers of the leukotriene D4 antagonist 3-[[[3-[2-(7-chloroquinolin-2-yl)-(E)-ethenyl]phenyl] [[3-(dimethylamino)-3-oxopropyl]thio]methyl]thio]propionic acid (L-660,711)(MK-571) have been prepared, their absolute stereochemistry has been assigned as S for (+)-1 and R for (-)-1 by X-ray analysis of a synthetic intermediate (5), and the biological activity of the enantiomers has been explored. Unexpectedly, the enantiomers are both comparably biologically active with (+)-1 slightly more intrinsically active at the LTD4 receptor in vitro.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.