The discovery of the potent and selective prostaglandin D2 (PGD2) receptor (DP) antagonist [(3R)-4-(4-chlorobenzyl)-7-fluoro-5-(methylsulfonyl)-1,2,3,4-tetrahydrocyclopenta[b]indol-3-yl]-acetic acid (13) is presented. Initial lead antagonists 6 and 7 were found to be potent and selective DP antagonists (DP Ki = 2.0 nM for each); however, they both suffered from poor pharmacokinetic profiles, short half-lives and high clearance rates in rats. Rat bile duct cannulation studies revealed that high concentrations of parent drug were present in the biliary fluid (Cmax = 1100 microM for 6 and 3900 microM for 7). This pharmacokinetic liability was circumvented by replacing the 7-methylsulfone substituent present in 6 and 7 with a fluorine atom resulting in antagonists with diminished propensity for biliary excretion and with superior pharmacokinetic profiles. Further optimization led to the discovery of the potent and selective DP antagonist 13.
MK-0591 (3-[1-(4-chlorobenzyl)-3-(t-butylthio)-5-(quinolin-2-yl-methoxy)- indol-2-yl]-2,2-dimethyl propanoic acid, previously L-686,708) is a potent inhibitor of leukotriene (LT) biosynthesis in intact human and elicited rat polymorphonuclear leukocytes (PMNLs) (IC50 values 3.1 and 6.1 nM, respectively) and in human, squirrel monkey, and rat whole blood (IC50 values 510, 69, and 9 nM, respectively). MK-0591 had no effect on rat 5-lipoxygenase. MK-0591 has a high affinity for 5-lipoxygenase activating protein (FLAP) as evidenced by an IC50 value of 1.6 nM in a FLAP binding assay and inhibition of the photoaffinity labelling of FLAP by two different photoaffinity ligands. Inhibition of activation of 5-lipoxygenase was shown through inhibition of the translocation of the enzyme from the cytosol to the membrane in human PMNLs. MK-0591 was a potent inhibitor of LT biosynthesis in vivo, first, following ex vivo challenge of blood obtained from treated rats and squirrel monkeys, second, in a rat pleurisy model, and, third, as monitored by inhibition of the urinary excretion of LTE4 in antigen-challenged allergic sheep. Inhibition of antigen-induced bronchoconstriction by MK-0591 was observed in inbred rats pretreated with methysergide, Ascaris-challenged squirrel monkeys, and Ascaris-challenged sheep (early and late phase response). These results indicate that MK-0591 is a potent inhibitor of LT biosynthesis both in vitro and in vivo indicating that the compound will be suitable for assessing the role of leukotrienes in pathological situations.
Naphthalenic lignan lactone 3a (L-702,539), a potent and selective 5-lipoxygenase (5-LO) inhibitor, is extensively metabolized at two different sites: the tetrahydropyran and the lactone rings. Early knowledge of the metabolic pathways triggered and directed a structure-activity relationship study aimed toward the improvement of metabolic stability in this series. The best modifications discovered, i.e., replacement of the lactone ring by a nitrile group, replacement of the tetrahydropyran ring by a 6,8-dioxabicyclo[3.2.1]octanyl moiety, and replacement of the pendant phenyl ring by a 3-furyl ring, were incorporated in a single molecule to produce inhibitor 9ac (L-708,780). Compound 9ac inhibits the oxidation of arachidonic acid to 5-hydroperoxy-eicosatetraenoic acid by 5-LO (IC50 = 190 nM) and the formation of leukotriene B4 in human polymorphonuclear leukocytes (IC50 = 3 nM) as well as in human whole blood (IC50 = 150 nM). The good inhibitory profile shown by naphthalenenitrile 9ac is accompanied by an improved resistance to oxidative metabolism. In addition, 9ac is orally active in the functional model of antigen-induced bronchoconstriction in allergic squirrel monkeys (95% inhibition at 0.1 mg/kg).
Dioxabicyclooctanyl naphthalenenitriles have been reported as a class of potent and nonredox 5-lipoxygenase (5-LO) inhibitors. These bicyclo derivatives were shown to be metabolically more stable than their tetrahydropyranyl counterparts but were not well orally absorbed. Replacement of the phenyl ring in the naphthalenenitrile 1 by a pyridine ring leads to the potent and orally absorbed inhibitor 3g (L-739,010, 2-cyano-4-(3-furyl)-7-[[6-[3-(3-hydroxy-6,8-dioxabicyclo[3.2.1] octanyl)]-2-pyridyl]methoxy]naphthalene). Compound 3g inhibits 5-HPETE production by human 5-LO and LTB4 biosynthesis by human PMN leukocytes and human whole blood (IC50S of 20, 1.6, and 42 nM, respectively). Derivative 3g is orally active in the rat pleurisy model (inhibition of LTB4, ED50 = 0.3 mg/kg) and in the anesthetized dog model (inhibition of ex vivo whole blood LTB4 and urinary LTE4, ED50 = 0.45 and 0.23 microgram/kg/min, respectively, i.v. infusion). In addition, 3g shows excellent functional activity against ovalbumin-induced dyspnea in rats (60% inhibition at 0.5 mg/kg, 4 h pretreatment) and Ascaris-induced bronchoconstriction in conscious sheep (50% and > 85% inhibition in early and late phases, respectively at 2.5 micrograms/kg/min, i.v. infusion) and, more particularly in the conscious antigen sensitive squirrel monkey model (53% inhibition of the increase in RL and 76% in the decrease of Cdyn, at 0.1 mg/kg, po). In rats and dogs, 3g presents excellent pharmacokinetics (estimated half-lives of 5 and 16 h, respectively) and bioavailabilities (26% and 73% when dosed as its hydrochloride salt at doses of 20 and 10 mg/kg, respectively, in methocel suspension). Based on its overall biological profile, compound 3g has been selected for preclinical animal toxicity studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.