The cysteinyl leukotrienes-leukotriene C4(LTC4), leukotriene D4(LTD4) and leukotriene E4(LTE4)-are important mediators of human bronchial asthma. Pharmacological studies have determined that cysteinyl leukotrienes activate at least two receptors, designated CysLT1 and CysLT2. The CysLT1-selective antagonists, such as montelukast (Singulair), zafirlukast (Accolate) and pranlukast (Onon), are important in the treatment of asthma. Previous biochemical characterization of CysLT1 antagonists and the CysLT1 receptor has been in membrane preparations from tissues enriched for this receptor. Here we report the molecular and pharmacological characterization of the cloned human CysLT1 receptor. We describe the functional activation (calcium mobilization) of this receptor by LTD4 and LTC4, and competition for radiolabelled LTD4 binding to this receptor by the cysteinyl leukotrienes and three structurally distinct classes of CysLT1-receptor antagonists. We detected CysLT1-receptor messenger RNA in spleen, peripheral blood leukocytes and lung. In normal human lung, expression of the CysLT1-receptor mRNA was confined to smooth muscle cells and tissue macrophages. Finally, we mapped the human CysLT1-receptor gene to the X chromosome.
We report the isolation of a cDNA clone named GPR54, which encodes a novel G protein-coupled receptor (GPCR). A PCR search of rat brain cDNA retrieved a clone partially encoding a GPCR. In a library screening this clone was used to isolate a cDNA with an open reading frame (ORF) encoding a receptor of 396 amino acids long which shared significant identities in the transmembrane regions with rat galanin receptors GalR1 (45%), GalR3 (45%) and GalR2 (44%). Northern blot and in situ hybridization analyses revealed that GPR54 is expressed in brain regions (pons, midbrain, thalamus, hypothalamus, hippocampus, amygdala, cortex, frontal cortex, and striatum) as well as peripheral regions (liver and intestine). In COS cell expression of GPR54 no specific binding was observed for 125 I-galanin. A recent BLAST search with the rat GPR54 ORF nucleotide sequence recovered the human orthologue of GPR54 in a 3.5 Mb contig localized to chromosome 19p13.3.z 1999 Federation of European Biochemical Societies.
The rate-limiting step in the formation of prostanoids is the conversion of arachidonic acid to prostaglandin H2 by cyclooxygenase, also known as prostaglandin G/H synthase/cyclooxygenase. Two forms of cyclooxygenase have been characterized: a ubiquitously expressed form (COX-1) and a recently described second form (COX-2) inducible by various factors including mitogens, hormones, serum and cytokines. Here we quantitate by the reverse transcriptase-polymerase chain reaction (RT-PCR) the expression of COX-1 and COX-2 mRNA in human tissues including lung, uterus, testis, brain, pancreas, kidney, liver, thymus, prostate, mammary gland, stomach and small intestine. All tissues examined contained both COX-1 and COX-2 mRNA and could be grouped according to the level of COX mRNA expression. The highest levels of COX mRNAs were detected in the prostate where approximately equal levels of COX-1 and COX-2 transcripts were present. In the lung high levels of COX-2 were observed whereas COX-1 mRNA levels were about 2-fold lower. An intermediate level of expression of both COX-1 and COX-2 mRNA was observed in the mammary gland, stomach, small intestine, and uterus. The lowest levels of COX-1 and COX-2 mRNA were observed in the testis, pancreas, kidney, liver, thymus, and brain.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.