As a complement to the renowned bicyclic β-lactam antibiotics, monocyclic analogues provide a breath of fresh air in the battle against resistant bacteria. In that framework, the present study discloses the in silico design and unprecedented ten-step synthesis of eleven nocardicin-like enantiomerically pure 2-{3-[2-(2-aminothiazol-4-yl)-2-(methoxyimino)acetamido]-2-oxoazetidin-1-yl}acetic acids starting from serine as a readily accessible precursor. The capability of this novel class of monocyclic 3-amino-β-lactams to inhibit penicillin-binding proteins (PBPs) of various (resistant) bacteria was assessed, revealing the potential of α-benzylidenecarboxylates as interesting leads in the pursuit of novel PBP inhibitors. No deactivation by representative enzymes belonging to the four β-lactamase classes was observed, while weak inhibition of class C β-lactamase P99 was demonstrated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.