Bdellovibrio bacteriovorus is a small Deltaproteobacterium which, since its discovery, has distinguished itself for the unique ability to prey on other Gram-negative bacteria. The studies on this particular "predatory bacterium", have gained momentum in response to the rising problem of antibiotic resistance, because it could be applied as a potential probiotic and antibiotic agent. Hereby, we present recent advances in the study of B. bacteriovorus, comprehending fundamental aspects of its biology, obligatory intracellular life cycle, predation resistance, and potential applications. Furthermore, we discuss studies that pave the road towards the use of B. bacteriovorus as a "living antibiotic" in human therapy, focussing on its interaction with biofilms, the host immune response, predation susceptibility and in vivo application models. The available data imply that it will be possible to upgrade this predator bacterium from a predominantly academic interest to an instrument that could confront antibiotic resistant infections.
Epithelial ovarian cancer (EOC) is one of the most lethal gynaecological cancers worldwide. EOC cells educate tumour-associated macrophages (TAMs) through CD44-mediated cholesterol depletion to generate an immunosuppressive tumour microenvironment (TME). In addition, tumour cells frequently activate Notch1 receptors on endothelial cells (ECs) to facilitate metastasis. However, little is known whether the endothelium would also influence the education of recruited monocytes. Here, we report that canonical Notch signalling through RBPJ in ECs is an important player in the education of TAMs and EOC progression. Deletion of Rbpj in the endothelium of adult mice reduced infiltration of monocyte-derived macrophages into the TME of EOC and prevented the acquisition of a typical TAM gene signature. This was associated with stronger cytotoxic activity of T cells and decreased tumour burden. Mechanistically, we identified CXCL2 as a novel Notch/RBPJ target gene. This angiocrine factor regulates the expression of CD44 on monocytes and subsequent cholesterol depletion of TAMs. Bioinformatic analysis of ovarian cancer patient data showed that increased CXCL2 expression is accompanied by higher expression of CD44 and TAM education. As such, EOC cells employ the tumour endothelium to secrete CXCL2 in order to facilitate an immunosuppressive microenvironment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.