Background: Congenital disorder of glycosylation (CDG) is a severe morphogenic and metabolic disorder that affects all of the systems of organs and is caused by a mutation of the gene PMM2, having a mortality rate of 20% during the first months of life. Results: Here we report the outcome of an in vitro fertilisation (IVF) cycle associated with preimplantation genetic testing for monogenic diseases (PGT-M) in a Romanian carrier couple for CDG type Ia with distinct mutations of the PMM2 gene. The embryonic biopsy was performed on day five of the blastocyst stage for six embryos. The amplification of the whole genome had been realized by using the PicoPLEX WGA kit. Using the Array Comparative Genomic Hybridisation technique, we detected both euploid and aneuploid embryos. The identification of the PMM2 mutation on exon 5 and exon 6 was performed for the euploid embryos through Sanger Sequencing with specific primers on ABI 3500. Of the six embryos tested, only three were euploid. One had compound heterozygosity and the remaining two were simple heterozygotes. Conclusion: PGT-M should be strongly considered for optimising embryo selection in partners with single-gene mutations in order to prevent transmission to the offspring.
Severe congenital myopathy with fatal cardiomyopathy (EOMFC) is a rare genetic neuromuscular disorder inherited in an autosomal recessive manner. Here we presented a successful pregnancy obtained by in vitro fertilization (IVF) using preimplantation genetic testing (PGT) in one young Romanian carrier couple that already lost mutation(s) within the TNN gene and whose first baby passed away due to multiple complications. It was delivered via emergency C-section at 36 weeks and fully dependent on artificial ventilation for a couple of months, weighing 2200 g and an APGAR score of 3. The aCGH + SNP analysis revealed an abnormal profile of the first newborn; three areas associated with loss of heterozygosity on chromosome 1 (q25.1–q25.3) of 6115 kb, 5 (p15.2–p15.1) of 2589 kb and 8 (q11.21–q11.23) of 4830 kb, a duplication of 1104 kb on chromosome 10 in the position q11.22, and duplication of 1193 kb on chromosome 16 in the position p11.2p11.1. Subsequently, we proceeded to test the parents and showed that both parents are carriers; confirmed by Sanger and NGS sequencing—father—on Chr2(GRCh37):g.179396832_179396833del—TTN variant c.104509_104510del p.(Leu34837Glufs*12)—exon 358 and mother—on Chr2(GRCh37):g.179479653G>C—TTN variant c.48681C>G p.(Tyr16227*)—exon 260. Their first child died shortly after birth due to multiple organ failures, possessing both parent’s mutations; weighing 2200 g at birth and received an APGAR score of 3 following premature delivery via emergency C-section at 36 weeks. Two embryos were obtained following the IVF protocol; one possessed the mother’s mutation, and the other had no mutations and was normal (WT). In contrast with the first birth, the second one was uneventful. A healthy female baby weighing 2990 g was delivered by C-section at 38 weeks, receiving an APGAR score of 9.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.