In this study, a new approach to optimize the cellulose nanocrystals (CNCs) extraction using acidic natural deep eutectic solvents (NADES) was introduced using, for the first time, design of experiment method. Choline chloride:oxalic acid dihydrate with a molar ratio of 1:1 was used to extract CNCs. Then, three most important parameters were varied to design the experiment: (i) cotton fibre concentrations, (ii) temperature and (iii) treatment time. Two outcomes were studied: the CNC yield and the crystallinity. The mathematical model for crystallinity perfectly described the experiments, while the model for CNC yield provided only a tendency. For a reaction time of 6 h at 95°C with a fibre concentration of 2%, the expected optimum CNC yield was approximately 35.5 ± 2.7% with a crystallinity index of 80 ± 1%. The obtained experimental results confirmed the models with 43.6 ± 1.9% and 81 ± 1% for the CNC yield and the crystallinity index, respectively. This study shows that it is possible to predict the CNC yield CNC and their crystallinity thanks to predictive mathematical models, which gives a great advantage to consider in the near future a scale up of the extraction of cellulose nanocrystals using this original family of green solvents.
During the last two decades, interest in cellulosic nanomaterials has greatly increased. Among these nanocelluloses, cellulose nanocrystals (CNC) exhibit outstanding properties. Indeed, besides their high crystallinity, cellulose nanocrystals are interesting in terms of morphology with high aspect ratio (length 100-1000 nm, width 2-15 nm), high specific area, and high mechanical properties. Moreover, they can be used as rheological modifier, emulsifier, or for barrier properties, and their surface chemistry opens the door to numerous feasible chemical modifications, leading to a large panel of applications in medical, electronic, composites, or packaging, for example. Traditionally, their extraction is performed via monitored sulfuric acid hydrolysis, leading to well-dispersed aqueous CNC suspensions; these last bearing negative charges (half-sulfate ester groups) at their surface. More recently, natural chemicals called deep eutectic solvents (DESs) have been used for the production of CNC in a way of green chemistry, and characterization of recovered CNC is encouraging.
Nanocellulose was extracted from short bast fibers, from hemp (Cannabis sativa L.) plants harvested at seed maturity, non-retted, and mechanically decorticated in a defibering apparatus, giving non-aligned fibers. A chemical pretreatment with NaOH and HCl allowed the removal of most of the non-cellulosic components of the fibers. No bleaching was performed. The chemically pretreated fibers were then refined in a beater and treated with a cellulase enzyme, followed by mechanical defibrillation in an ultrafine friction grinder. The fibers were characterized by microscopy, infrared spectroscopy, thermogravimetric analysis and X-ray diffraction after each step of the process to understand the evolution of their morphology and composition. The obtained nanocellulose suspension was composed of short nanofibrils with widths of 5–12 nm, stacks of nanofibrils with widths of 20–200 nm, and some larger fibers. The crystallinity index was found to increase from 74% for the raw fibers to 80% for the nanocellulose. The nanocellulose retained a yellowish color, indicating the presence of some residual lignin. The properties of the nanopaper prepared with the hemp nanocellulose were similar to those of nanopapers prepared with wood pulp-derived rod-like nanofibrils.
This study reports the combination of mechanochemistry and natural deep eutectic solvents (NADES) to produce nanocellulose with a one-step process, combining the advantages of both techniques. Two acidic NADES were chosen as solvents, both involving choline chloride as the hydrogen-bond acceptor (HBA); however, the hydrogen-bond donor (HBD) was oxalic acid dihydrate or citric acid monohydrate. NADES are successfully prepared by grinding the two products for 15 s. Then, cotton fibers were subjected to intense mechanical treatment for 1.5 h at room temperature, thus producing superficially carboxylated nanocellulose. In fact, shearing and impact forces provided by the milling promote the amorphous cellulose hydrolysis and the surface esterification of nanocellulose. Cellulose nanocrystals (CNCs) were then extracted with a yield of 65%, and their lengths were established at about 143 nm. Moreover, carboxylated CNCs showed a high thermal stability with an onset temperature of degradation of about 338 °C and a high crystallinity index of 93%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.