There have been many calls to make research experiences available to more undergraduate students. One way to do this is to provide course-based undergraduate research experiences (CUREs), but providing these on a scale large enough to accommodate many students can be a daunting undertaking. Indeed, other researchers have identified time to develop materials and course size as significant barriers to widespread implementation of CUREs. Based on our own experiences implementing CUREs at a large research university, we present a flexible framework that we have adapted to multiple research projects, share class materials and rubrics we have developed, and suggest logistical strategies to lower these implementation barriers.
The sea otter has experienced a dramatic population decline caused by intense human harvesting, followed by a century of recovery including relocation efforts to reestablish the species across its former range in the eastern Pacific. Although the otter was historically present along the coast in Oregon, there are currently no populations in this region and reintroduction efforts have failed. We examined the mtDNA genotypes of 16 pre-harvest otter samples from two Oregon locations in an attempt to determine the best genotypic match with extant populations. Our amplifications of a 222 base-pair portion of the control region from otters ranging in age from approximately 175-2000 years revealed four genotypes. The genotypic composition of pre-harvest otter populations appears to match best with those of contemporary populations from California and not from Alaska, where reintroduction stocks are typically derived.
Numerous processes influence community structure. The relative importance of these processes is thought to vary with spatial, temporal and taxonomic scales: density-dependent interactions are thought to be most important at small scales; at intermediate scales, environmental conditions may be the most influential factor; and biogeographic processes are thought to be of greater importance at larger scales. Additionally, the stress-dominance hypothesis suggests that communities experiencing harsher environmental conditions will be predominantly structured by habitat filtering, whereas communities experiencing more favourable conditions will be structured predominantly by density-dependent interactions such as competition. The aim of this study was to investigate the influence of environmental factors on phylogenetic community structure (PCS) of North American desert bats at multiple spatial and taxonomic scales. We also examined whether the stress-dominance hypothesis is upheld in desert bats across an environmental gradient. Phylogenetic community structure metrics were calculated using species pools that differed in spatial (from all deserts to individual deserts) and taxonomic (all bat taxa, a single family and a single genus) scales. We calculated mean temperature, precipitation and seasonality for each site to determine whether environmental gradients were related to degree of community structure. At the largest spatial and taxonomic scales, communities were significantly phylogenetically clustered while degree of clustering decreased at the smallest spatial and taxonomic scales. Climatic data, particularly mean temperature and temperature seasonality, were important predictors of PCS at larger scales and under harsher conditions, but at smaller scales and in less stressful conditions there was a weaker relationship between PCS and climate. This suggests that North American deserts, while harsh, are not uniform in the challenges they present to the faunas residing in them. Overall, the relationship between PCS and climatic data at large spatial and taxonomic scales, and in harsher conditions, suggests the influence of habitat filtering has been important in North American desert bat community assembly and that other processes have been important at smaller scales.
In the past 30 years, leaders in undergraduate education have called for transformations in science pedagogy to reflect the process of science as well as to develop professional skills, apply new and emerging technologies, and to provide more hands-on experience. These recommendations suggest teaching strategies that incorporate active learning methods that consistently increase learning, conceptual understanding, integration of subject knowledge with skill development, retention of undergraduate students in science, technology, engineering, and mathematics (STEM) majors, and inclusivity. To gain insight into current practices and pedagogy we surveyed members of the American Society of Mammalogists in 2021. The survey consisted of both fixed-response questions (e.g., multiple-choice or Likert-scale) and open-ended questions, each of which asked instructors about the structure and content of a Mammalogy or field Mammalogy course. In these courses, we found that lecturing was still a primary tool for presenting course content or information (x¯= 65% of the time); nonetheless, most instructors reported incorporating other teaching strategies ranging from pausing lectures for students to ask questions to incorporating active learning methods, such as debates or case studies. Most instructors reported incorporating skill development and inclusive teaching practices, and 64% reported that they perceived a need to change or update their Mammalogy courses or their teaching approaches. Overall, our results indicate that Mammalogy instructors have a strong interest in training students to share their appreciation for mammals and are generally engaged in efforts to increase the effectiveness of their teaching through the incorporation of more student-centered approaches to teaching and learning.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.