We introduce an explicitly solvable multiscale stochastic volatility model that generalizes the Heston model. The model describes the dynamics of an asset price and of its two stochastic variances using a system of three Ito stochastic
Option Pricing and Calibration Problems 863Journal of Futures Markets DOI: 10.1002/fut differential equations. The two stochastic variances vary on two distinct time scales and can be regarded as auxiliary variables introduced to model the dynamics of the asset price. Under some assumptions, the transition probability density function of the stochastic process solution of the model is represented as a onedimensional integral of an explicitly known integrand. In this sense the model is explicitly solvable. We consider the risk-neutral measure associated with the proposed multiscale stochastic volatility model and derive formulae to price European vanilla options (call and put) in the multiscale stochastic volatility model considered. We use the thus-obtained option price formulae to study the calibration problem, that is to study the values of the model parameters, the correlation coefficients of the Wiener processes defining the model, and the initial stochastic variances implied by the "observed" option prices using both synthetic and real data. In the analysis of real data, we use the S&P 500 index and to the prices of the corresponding options in the year 2005. The web site http://www.econ.univpm.it/recchioni/finance/w7 contains some auxiliary material including some animations that helps the understanding of this article. A more general reference to the work of the authors and their coauthors in mathematical finance is the web site
A masking problem in time dependent three dimensional acoustic obstacle scattering is considered. The masking problem consists in making masked a bounded scatterer characterized by an acoustic boundary impedance and immersed in a homogeneous isotropic medium that, when hit by an incident acoustic field, generates a scattered acoustic field. The precise definition of the masking problem is given later. This problem has been formulated as an optimal control problem for the wave equation. The corresponding first order optimality condition is derived and solved with a highly parallelizable numerical method. Some numerical experience on a test problem is shown. (C) 2004 Acoustical Society of America
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.