No difference was observed in vitamin D levels between the entire ALRI group and control groups; however, significantly more children admitted to the pediatric intensive care unit with ALRI were vitamin D deficient. These findings suggest that the immunomodulatory properties of vitamin D might influence ALRI disease severity.
The plant endoplasmic reticulum (ER) contains functionally distinct subdomains at which cargo molecules are packed into transport carriers. To study these ER export sites (ERES), we used tobacco (Nicotiana tabacum) leaf epidermis as a model system and tested whether increased cargo dosage leads to their de novo formation. We have followed the subcellular distribution of the known ERES marker based on a yellow fluorescent protein (YFP) fusion of the Sec24 COPII coat component (YFP-Sec24), which, differently from the previously described ERES marker, tobacco Sar1-YFP, is visibly recruited at ERES in both the presence and absence of overexpressed membrane cargo. This allowed us to quantify variation in the ERES number and in the recruitment of Sec24 to ERES upon expression of cargo. We show that increased synthesis of membrane cargo leads to an increase in the number of ERES and induces the recruitment of Sec24 to these ER subdomains. Soluble proteins that are passively secreted were found to leave the ER with no apparent up-regulation of either the ERES number or the COPII marker, showing that bulk flow transport has spare capacity in vivo. However, de novo ERES formation, as well as increased recruitment of Sec24 to ERES, was found to be dependent on the presence of the diacidic ER export motif in the cytosolic domain of the membrane cargo. Our data suggest that the plant ER can adapt to a sudden increase in membrane cargo-stimulated secretory activity by signal-mediated recruitment of COPII machinery onto existing ERES, accompanied by de novo generation of new ERES.
Monocytes are recruited to the material surface of an implanted biomedical device recognizing it as a foreign body. Differentiation into macrophages subsequently occurs followed by fusion to form foreign body giant cells (FBGCs). Consequently, implants can become degraded, cause chronic inflammation or become isolated by fibrous encapsulation. In this study, a relationship between material surface chemistry and the FBGC response was demonstrated by seeding mature monocyte-derived macrophages (MDMs) on polycarbonate-based polyurethanes that differed in their chemical structures (synthesized with poly(1,6-hexyl 1,2-ethyl carbonate) diol, and either (14)C-hexane diisocyanate and butanediol (BD) (referred to as HDI) or 4,4'-methylene bisphenyl diisocyanate and (14)C-BD (referred to as MDI)) and material degradation assessed. At 48 h of cell-material interaction, the FBGC attached to HDI were more multinucleated (73%) compared to MDI or the polystyrene (PS) control (21 and 36%, respectively). There was a fivefold increase in the synthesis and secretion of a protein with an approximate molecular weight of 48 kDa and a pI of 6.1 (determined by two-dimensional gel electrophoresis) only from cells seeded on HDI. Immunoprecipitation confirmed that MSE and CE were synthesized and secreted de novo. Immunoblotting also showed an increase in secreted monocyte-specific esterase (MSE) and cholesterol esterase (CE) from cells seeded on HDI relative to PS and MDI. Significantly more radiolabel ((14)C) release and esterase activity were elicited by MDMs on HDI than MDI (P < 0.05). The material that was more degradable (HDI), elicited greater protein synthesis and esterase secretion as well as more multinucleated MDMs than MDI, suggesting that the material surface chemistry modulates the function of MDM at the site of an inflammatory response to an implanted device.
The prominent cell type found on implanted medical devices during the chronic inflammatory response is the monocyte-derived macrophage (MDM). Using an activated in vitro cell system, it was possible to show that MDMs possess esterolytic activities that may contribute to the degradation of polyurethanes. In the present study, the U937 cell line was paralleled to the MDM cell system in order to validate the use of a cell line that could expedite studies on biomaterial biocompatibility and biostability. Using 12-o-tetradecanoylphorbol 13-acetate (PMA), the optimum differentiation time for the U937 cells was 72 h based on biodegradation, degradative potential, and (35)S-methionine uptake. After activation of the cells by resuspending from tissue culture polystyrene plates and reseeding onto a (14)C-labeled polycarbonate-based polyurethane(PCNU), both U937 cells and the MDMs elicited comparable radiolabel release (measure of polymer breakdown) and esterase activity (measure of degradative potential) at 48 h. There was no difference in the effect on radiolabel release and esterase activity elicited by both cell types with inhibitors of protein synthesis, esterase activity, and phospholipase A(2). This established that both cell types likely used similar hydrolytic activities and signaling pathways to cause degradation of the PCNU. Immunoblotting demonstrated that both cell systems secreted monocyte-specific esterase and cholesterol esterase enzymes previously shown to degrade PCNUs. The U937 cell system is more convenient and reproducible than MDMs for pursuing possible biological pathways elucidating the mechanism of polyurethane biodegradation. Once established with U937s, the pathways can then be validated with the more physiologically relevant human MDM cell system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.