A cross-layer performance analysis of a wireless network using adaptive modulation and coding at the physical layer and a truncated Chase combining hybrid automatic repeat request (HARQ-CC) scheme for error control at the data link layer is developed. Based on a Markov chain queueing model, analytical expressions for performance metrics such as throughput, average packet delay and packet loss rate are derived and then used to formulate a constrained optimization problem to maximize the system throughput under the prescribed Qualityof-Service constraints. Numerical results reveal that HARQ-CC consistently outperforms the classical Type-I Hybrid forward error correction/automatic repeat request schemes.
This paper proposes a novel framework for the cross-layer design and optimization of wireless networks combining adaptive modulation and coding (AMC) at the physical (PHY) layer with automatic repeat request and channel-aware multiuser scheduling protocols at the data link control (DLC) layer. The proposed framework is based on the use of first-order two-dimensional discrete time Markov chains (DTMCs) jointly modeling the AMC scheme and the amplitude and rate of change of the wireless channel fading envelope. The behavior of the scheduler is embedded into the multidimensional PHY layer Markov model through the use of a service-vacation process. Using this PHY-media access control (MAC) Markov model, the quality of service performance at the DLC layer is discussed considering two different approaches. The first one relies on an analytical framework that is based on the multidimensional DTMC jointly describing the statistical behavior of the arrival process, the queuing system, and the PHY layer. The second one is rooted in the use of the effective bandwidth theory to model the packet arrival process and the effective capacity theory to model the PHY/MAC behavior. Both the DTMC-based and effective bandwidth/capacity-based approaches are analyzed and compared in a cross-layer design aiming at maximizing the average throughput of the system where constraints on the maximum tolerable average packet loss and delay are to be fulfilled.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.