Native oyster reefs once dominated many estuaries, ecologically and economically. Centuries of resource extraction exacerbated by coastal degradation have pushed oyster reefs to the brink of functional extinction worldwide. We examined the condition of oyster reefs across 144 bays and 44 ecoregions; our comparisons of past with present abundances indicate that more than 90% of them have been lost in bays (70%) and ecorevions effective solutions fo restoration, and the management of fisheries and nonnative species that could reverse these oyster losses and restore reef ecosystem services.
The importance of restoring filter-feeders, such as the Eastern oyster Crassostrea virginica, to mitigate the effects of eutrophication (e.g. in Chesapeake Bay) is currently under debate. The argument that bivalve molluscs alone cannot control phytoplankton blooms and reduce hypoxia oversimplifies a more complex issue, namely that ecosystem engineering species make manifold contributions to ecosystem services. Although further discussion and research leading to a more complete understanding is required, oysters and other molluscs (e.g. mussels) in estuarine ecosystems provide services far beyond the mere top-down control of phytoplankton blooms, such as (1) seston filtration, (2) benthic-pelagic coupling, (3) creation of refugia from predation, (4) creation of feeding habitat for juveniles and adults of mobile species, and for sessile stages of species that attach to molluscan shells, and (5) provision of nesting habitat.
Historic baselines are important in developing our understanding of ecosystems in the face of rapid global change. While a number of studies have sought to determine changes in extent of exploited habitats over historic timescales, few have quantified such changes prior to late twentieth century baselines. Here, we present, to our knowledge, the first ever large-scale quantitative assessment of the extent and biomass of marine habitat-forming species over a 100-year time frame. We examined records of wild native oyster abundance in the United States from a historic, yet already exploited, baseline between 1878 and 1935 (predominantly 1885–1915), and a current baseline between 1968 and 2010 (predominantly 2000–2010). We quantified the extent of oyster grounds in 39 estuaries historically and 51 estuaries from recent times. Data from 24 estuaries allowed comparison of historic to present extent and biomass. We found evidence for a 64 per cent decline in the spatial extent of oyster habitat and an 88 per cent decline in oyster biomass over time. The difference between these two numbers illustrates that current areal extent measures may be masking significant loss of habitat through degradation.
We used a field experiment to assess the individual and combined effects of removing top predators and enriching water column nutrients (nitrogen-N and phosphorus-P) on seagrass ecosystem structure and function. Experiments were conducted in turtlegrass (Thalassia testudinum) habitats in St. Joseph Bay, FL, an aquatic preserve in the northern Gulf of Mexico that exhibits low ambient nutrient concentrations and contains abundant populations of small crustacean and gastropod mesograzers. We stocked 7.0 m 2 enclosures with elevated (ϳ4-8ϫ ambient) densities of juvenile pinfish (Lagodon rhomboides), the dominant fish species in local seagrass habitats, to simulate the first-order effects of large predator reductions, and we used an in situ delivery system to supplement N and P to ϳ3ϫ ambient levels in nutrient addition treatments. Monthly determinations of water column nutrients and Chl a, along with measurements of the biomass and abundance of leaf epiphytes and seagrass production, biomass, and shoot and leaf densities were used to evaluate the relative effects of manipulating nutrient supply and altering food web structure.In contrast to our expectations, results showed few significant nutrient effects, or fish ϫ nutrient enrichment effects on any of the parameters measured. However, there were many significant fish effects, most of which were unexpected. As predicted, increased pinfish density reduced mesograzer numbers significantly. Not anticipated, however, was the reduced epiphyte biomass in fish enclosure treatments, apparently brought about by the pinfish consuming significant amounts of epiphytes as well as mesograzers. This reduction in epiphyte biomass produced positive indirect effects on seagrass biomass, shoot number, and rates of primary productivity in pinfish enclosure treatments.Our results also showed important top-down effects in determining the composition and abundance of seagrassassociated plants and animals in this pristine environment. Although we did not observe simple trophic cascades, most likely because pinfish fed at more than one trophic level, and because the dense seagrass prevented small grazers from being reduced to low numbers, pinfish produced important changes in the epibiota as well as the seagrasses themselves. These data, while contrasting with studies reporting significant negative nutrient enrichment effects on seagrasses, support the results of recent experimental studies in showing that: (1) small grazers can often control the abundance of epiphytes; and (2) it is unlikely that a full understanding of the consequences of nutrient enrichment for seagrass ecosystems can be gained without knowing how grazer population are regulated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.