We investigate the forecasting ability of the most commonly used benchmarks in financial economics. We approach the usual caveats of probabilistic forecasts studies -small samples, limited models and non-holistic validations-by performing a comprehensive comparison of 15 predictive schemes during a time period of over 21 years. All densities are evaluated in terms of their statistical consistency, local accuracy and forecasting errors. Using a new composite indicator, the Integrated Forecast Score (IFS), we show that risk-neutral densities outperform historical-based predictions in terms of information content. We find that the Variance Gamma model generates the highest out-of-sample likelihood of observed prices and the lowest predictive errors, whereas the ARCH-based GJR-FHS delivers the most consistent forecasts across the entire density range. In contrast, lognormal densities, the Heston model or the Breeden-Litzenberger formula yield biased predictions and are rejected in statistical tests.
We investigate the forecasting ability of the most commonly used benchmarks in financial economics. We approach the usual caveats of probabilistic forecasts studies-small samples, limited models, and nonholistic validations-by performing a comprehensive comparison of 15 predictive schemes during a time period of over 21 years. All densities are evaluated in terms of their statistical consistency, local accuracy and forecasting errors. Using a new composite indicator, the integrated forecast score, we show that risk-neutral densities outperform historical-based predictions in terms of information content. We find that the variance gamma model generates the highest out-of-sample likelihood of observed prices and the lowest predictive errors, whereas the GARCH-based GJR-FHS delivers the most consistent forecasts across the entire density range. In contrast, lognormal densities, the Heston model, or the nonparametric Breeden-Litzenberger formula yield biased predictions and are rejected in statistical tests.
We investigate the forecasting ability of the most commonly used benchmarks in financial economics. We approach the usual caveats of probabilistic forecasts studies—small samples, limited models, and nonholistic validations—by performing a comprehensive comparison of 15 predictive schemes during a time period of over 21 years. All densities are evaluated in terms of their statistical consistency, local accuracy and forecasting errors. Using a new composite indicator, the integrated forecast score, we show that risk‐neutral densities outperform historical‐based predictions in terms of information content. We find that the variance gamma model generates the highest out‐of‐sample likelihood of observed prices and the lowest predictive errors, whereas the GARCH‐based GJR‐FHS delivers the most consistent forecasts across the entire density range. In contrast, lognormal densities, the Heston model, or the nonparametric Breeden–Litzenberger formula yield biased predictions and are rejected in statistical tests.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.