Orchids are the most diverse family of angiosperms, with over 25 000 species, more than mammals, birds and reptiles combined. Tests of hypotheses to account for such diversity have been stymied by the lack of a fully resolved broad-scale phylogeny. Here, we provide such a phylogeny, based on 75 chloroplast genes for 39 species representing all orchid subfamilies and 16 of 17 tribes, time-calibrated against 17 angiosperm fossils. A supermatrix analysis places an additional 144 species based on three plastid genes. Orchids appear to have arisen roughly 112 million years ago (Mya); the subfamilies Orchidoideae and Epidendroideae diverged from each other at the end of the Cretaceous; and the eight tribes and three previously unplaced subtribes of the upper epidendroids diverged rapidly from each other between 37.9 and 30.8 Mya. Orchids appear to have undergone one significant acceleration of net species diversification in the orchidoids, and two accelerations and one deceleration in the upper epidendroids. Consistent with theory, such accelerations were correlated with the evolution of pollinia, the epiphytic habit, CAM photosynthesis, tropical distribution (especially in extensive cordilleras), and pollination via Lepidoptera or euglossine bees. Deceit pollination appears to have elevated the number of orchid species by one-half but not via acceleration of the rate of net diversification. The highest rate of net species diversification within the orchids (0.382 sp sp 21 My 21) is 6.8 times that at the Asparagales crown.
AimOrchidaceae is the most species-rich angiosperm family and has one of the broadest distributions. Until now, the lack of a well-resolved phylogeny has prevented analyses of orchid historical biogeography. In this study, we use such a phylogeny to estimate the geographical spread of orchids, evaluate the importance of different regions in their diversification and assess the role of long-distance dispersal (LDD) in generating orchid diversity. LocationGlobal. MethodsAnalyses use a phylogeny including species representing all five orchid subfamilies and almost all tribes and subtribes, calibrated against 17 angiosperm fossils. We estimated historical biogeography and assessed the importance of different regions for rates of speciation, extinction and net species diversification. We evaluated the impact of particular LDD events on orchid diversity by asking how many species evolved in the new range subsequent to those events. ResultsOrchids appear to have arisen in Australia 112Ma (95% higher probability distribution: 102.0-120.0Ma), then spread to the Neotropics via Antarctica by 90Ma (HPD: 79.7-99.5Ma), when all three continents were in close contact and apostasioids split from the ancestor of all other orchids. Ancestors of vanilloids, cypripedioids and orchidoids+epidendroids appear to have originated in the Neotropics 84-64Ma. Repeated long- and short-distance dispersal occurred through orchid history: stochastic mapping identified a mean total of 74 LDD events or 0.8Ma(-1). Across orchid history, Southeast Asia was the most important source and maximally accelerated net diversification; across epidendroids, the Neotropics maximally accelerated diversification. Main conclusionsOur analysis provides the first biogeographical history of the orchids, implicating Australia, the Neotropics and Antarctica in their origin. LDD and life in the Neotropics - especially the Andes - had profound effects on their spread and diversification; >97% of all orchid species are restricted to individual continents
Phylogenetic relationships within the orchid subtribe Oncidiinae sensu Chase were inferred using maximum likelihood analyses of single and multilocus DNA sequence data sets. Analyses included both nuclear ribosomal internal transcribed spacer DNA and plastid regions (matK exon, trnH-psbA intergenic spacer and two portions of ycf1 exon) for 736 individuals representing approximately 590 species plus seven outgroup taxa. Based on the well resolved and highly supported results, we recognize 61 genera in Oncidiinae. Mimicry of oil-secreting Malpighiaceae and other floral syndromes evolved in parallel across the subtribe, and many clades exhibit extensive variation in pollination-related traits. Because previous classifications heavily emphasized these floral features, many genera recognized were not monophyletic. Our classification based on monophyly will facilitate focused monographs and clarifies the evolution of morphological and biochemical traits of interest within this highly diverse subtribe.
The orchid genus Maxillaria is one of the largest and most common of neotropical orchid genera, but its current generic boundaries and relationships have long been regarded as artificial. Phylogenetic relationships within subtribe Maxillariinae sensu Dressler (1993) with emphasis on Maxillaria s.l. were inferred using parsimony analyses of individual and combined DNA sequence data. We analyzed a combined matrix of nrITS DNA, the plastid matK gene and flanking trnK intron, and the plastid atpB-rbcL intergenic spacer for 619 individuals representing ca. 354 species. The plastid rpoC1 gene (ca. 2600 bp) was sequenced for 84 selected species and combined in a more limited analysis with the other data sets to provide greater resolution. In a well-resolved, supported consensus, most clades were present in more than one individual analysis. All the currently recognized minor genera of "core" Maxillariinae (Anthosiphon, Chrysocycnis, Cryptocentrum, Cyrtidiorchis, Mormolyca, Pityphyllum, and Trigonidium) are embedded within a polyphyletic Maxillaria s.l. Our results support the recognition of a more restricted Maxillaria, of some previously published segregate genera (Brasiliorchis, Camaridium, Christensonella, Heterotaxis, Ornithidium, Sauvetrea), and of several novel clades at the generic level. These revised monophyletic generic concepts should minimize further nomenclatural changes, encourage monographic studies, and facilitate more focused analyses of character evolution within Maxillariinae.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations鈥揷itations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright 漏 2024 scite LLC. All rights reserved.
Made with 馃挋 for researchers
Part of the Research Solutions Family.