Eugenio Carrasco-Marín, deicme@humv.es †These authors contributed equally to this study.Listeria monocytogenes (LM) phagocytic strategy implies recruitment and inhibition of Rab5a. Here, we identify a Listeria protein that binds to Rab5a and is responsible for Rab5a recruitment to phagosomes and impairment of the GDP/GTP exchange activity. This protein was identified as a glyceraldehyde-3-phosphate dehydrogenase (GAPDH) from Listeria (p40 protein, Lmo 2459). The p40 protein was found within the phagosomal membrane. Analysis of the sequence of LM p40 protein revealed two enzymatic domains: the nicotinamide adenine dinucleotide (NAD)-binding domain at the N-terminal and the C-terminal glycolytic domain. The putative ADP-ribosylating ability of this Listeria protein located in the N-terminal domain was examined and showed some similarities to the activity and Rab5a inhibition exerted by Pseudomonas aeruginosa ExoS onto endosome-endosome fusion. Listeria p40 caused Rab5a-specific ADP ribosylation and blocked Rab5a-exchange factor (Vps9) and GDI interaction and function, explaining the inhibition observed in Rab5a-mediated phagosome-endosome fusion. Meanwhile, ExoS impaired Rab5-early endosomal antigen 1 (EEA1) interaction and showed a wider Rab specificity. Listeria GAPDH might be the first intracellular gram-positive enzyme targeted to Rab proteins with ADP-ribosylating ability and a putative novel virulence factor.Key words: ADP-ribosylation, GDP/GTP exchange, glyceraldehyde-3-phosphate dehydrogenase, Listeria, phagocytosis, Rab5a Listeria monocytogenes (LM) is a gram-positive human pathogen that remains for a relatively short time within the phagosomal compartment depending on the cell line. In macrophages, for instance, the average time of bacteria remaining inside the phagosomes is 90 min (1); thereafter, bacteria escape to the cytosol and replicate. During the time LM remains within the phagosome, it modulates the phagosomal composition by targeting Rab5a function and preventing phagosome maturation (2,3). The importance of Rab5 for LM intracellular growth and other infection steps such as entry or vacuolar escape was recently highlighted using small interfering RNA interference technology (4,5). The pathogen produces membrane-active exoproteins within the phagosomes that mediate membrane disruption (6). Intracellular bacteria are able to interfere with vesicle trafficking regulators in order to modify the vesicles in which they reside according to the needs of the specific pathogen. In this regard, there are only a few examples of bacteria whose strategy is target small guanosine triphosphatases (GTPases) exchange activities. For instance, Legionella pneumophila protein RalF functions as a guanine nucleotide exchange factor (GEF) for the ADP ribosylation factor family of small GTPases (7). Salmonella typhimurium SopE protein is another example of an intracellular bacterial factor target small GTPase exchange factor for the Rho/Rab family (8). Recently, our group has described the intracellular trafficking str...
Deciphering how Listeria monocytogenes exploits the host cell machinery to invade mammalian cells is a key issue in understanding the pathogenesis of this food-borne pathogen, which can cause diseases ranging from gastroenteritis to meningitis and abortion. In this study, we show that the lysosomal aspartyl-protease cathepsin-D (Ctsd) is of considerable importance for nonoxidative listericidal defense mechanisms. We observed enhanced susceptibility to L. monocytogenes infection of fibroblasts and bone-marrow macrophages and increased intraphagosomal viability of bacteria in fibroblasts isolated from Ctsd-deficient mice compared with wild type. These findings are further supported by prolonged survival of L. monocytogenes in Ctsd-deficient mice after infection. Transient transfection of Ctsd in wild-type cells was sufficient to revert these wild-type phagosomes back to microbicidal compartments. Based on infection experiments with mutant bacteria, in vitro degradation, and immunoprecipitation experiments, we suggest that a major target of cathepsin D is the main virulence factor listeriolysin O.
The innate immune response to Listeria monocytogenes depends on phagosomal bacterial degradation by macrophages. Here, we describe the role of LIMP-2, a lysosomal type III transmembrane glycoprotein and scavenger-like protein, in Listeria phagocytosis. LIMP-2-deficient mice display a macrophage-related defect in Listeria innate immunity. They produce less acute phase pro-inflammatory cytokines/chemokines, MCP-1, TNF-␣, and IL-6 but normal levels of IL-12, IL-10, and IFN-␥ and a 25-fold increase in susceptibility to Listeria infection. This macrophage defect results in a low listericidal potential, poor response to TNF-␣ activation signals, impaired phago-lysosome transformation into antigen-processing compartments, and uncontrolled LM cytosolic growth that fails to induce normal levels of acute phase pro-inflammatory cytokines. LIMP-2 transfection of CHO cells confirmed that LIMP-2 participates in the degradation of Listeria within phagosomes, controls the late endosomal/lysosomal fusion machinery, and is linked to the activation of Rab5a. Therefore, the role of LIMP-2 appears to be connected to the TNF-␣-dependent and early activation of Listeria macrophages through internal signals linking the regulation of late trafficking events with the onset of the innate Listeria immune response.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.