Maternal lifestyle affects both mother health and pregnancy outcome in humans. Several studies have demonstrated that interventions oriented toward reducing stress and anxiety have positive effects on pregnancy complications such as preeclampsia, excessive gestational weight, gestational diabetes and preterm birth. In this work, we showed that the environmental enrichment (EE), defined as a noninvasive and biologically significant stimulus of the sensory pathway combined with voluntary physical activity, prevented preterm birth (PTB) rate by 40% in an inflammatory mouse model induced by the systemic administration of bacterial lipopolysaccharide (LPS). Furthermore, we found that EE modulates maternal metabolism and produces an anti-inflammatory environment that contributes to pregnancy maintenance. In pregnant mice uterus, EE reduces the expression of TLR4 and CD14 (the LPS receptor and its coactivator protein), preventing the LPS-induced increase in PGE2 and PGF2α release and nitric oxide synthase (NOS) activity. In cervical tissue, EE inhibits cervical ripening events, such as PGE2 release, matrix metalloproteinase (MMP)-9 increased activity and neutrophil recruitment, therefore conserving cervical function. It seems that EE exposure could mimic the stress and anxiety-reducing techniques mentioned above, explaining, at least partially, the beneficial effects of having a healthy lifestyle before and during gestation. Furthermore, we propose that designing an EE protocol for humans could be a noninvasive and preventive therapy for pregnancy complications, averting pre-term birth occurrence and dreaded sequelae that are present in the offspring born too soon.
Prenatal and postnatal zinc deficiency induces alterations in cardiac apoptotic, inflammatory, oxidative, and nitric oxide pathways that could predispose the onset of cardiovascular diseases in adult life.
Micronutrient malnutrition during intrauterine and postnatal growth may program cardiovascular diseases in adulthood. We examined whether moderate zinc restriction in male and female rats throughout fetal life, lactation and/or postweaning growth induces alterations that can predispose to the onset of vascular dysfunction in adulthood. Female Wistar rats were fed low- or control zinc diets from pregnancy to offspring weaning. After weaning, offspring were fed either a low- or a control zinc diet until 81 days. We evaluated systolic blood pressure (SBP), thoracic aorta morphology, nitric oxide (NO) system and vascular reactivity in 6- and/or 81-day-old offspring. At day 6, zinc-deficient male and female offspring showed a decrease in aortic NO synthase (NOS) activity accompanied by an increase in oxidative stress. Zinc-deficient 81-day-old male rats exhibited an increase in collagen deposition in tunica media, as well as lower activity of endothelial NOS (eNOS) that could not be reversed with an adequate zinc diet during postweaning life. Zinc deficiency programmed a reduction in eNOS protein expression and higher SBP only in males. Adult zinc-deficient rats of both sexes showed reduced vasodilator response dependent on eNOS activity and impaired aortic vasoconstrictor response to angiotensin-II associated with alterations in intracellular calcium mobilization. Female rats were less sensitive to the effects of zinc deficiency and exhibited higher eNOS activity and/or expression than males, without alterations in SBP or aortic histology. This work strengthens the importance of a balanced intake of micronutrients during perinatal growth to ensure adequate vascular function in adult life.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.