An organic extract from fresh shrimp (Litopenaeus vannamei) was studied for antimutagenic and antiproliferative properties using Salmonella typhimurium tester strains TA98 and TA100 with metabolic activation (S9) and a cancer cell line (B-cell lymphoma), respectively. Shrimp extract was sequentially fractionated by thin layer chromatography (TLC) and each fraction was tested for antimutagenic and antiproliferative activities. Crude organic extracts obtained from shrimp reduced the number of revertants caused by aflatoxina B1, showing a dose-response type of relationship. Sequential TLC fractionation of the active extracts produced several antimutagenic and/or antiproliferative fractions. These results suggested that the lipid fraction of the tested species contained compounds with chemoprotective properties that reduce the mutagenicity of AFB1 and proliferation of a cancer cell line.
Shrimp is one of the most popular seafood items worldwide, and has been reported as a source of chemopreventive compounds. In this study, shrimp lipids were separated by solvent partition and further fractionated by semi-preparative RP-HPLC and finally by open column chromatography in order to obtain isolated antiproliferative compounds. Antiproliferative activity was assessed by inhibition of M12.C3.F6 murine cell growth using the MTT (3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide) assay. The methanolic fraction showed the highest antiproliferative activity; this fraction was separated into 15 different sub-fractions (M1–M15). Fractions M8, M9, M10, M12, and M13 were antiproliferative at 100 µg/mL and they were further tested at lower concentrations. Fractions M12 and M13 exerted the highest growth inhibition with an IC50 of 19.5 ± 8.6 and 34.9 ± 7.3 µg/mL, respectively. Fraction M12 was further fractionated in three sub-fractions M12a, M12b, and M12c. Fraction M12a was identified as di-ethyl-hexyl-phthalate, fraction M12b as a triglyceride substituted by at least two fatty acids (predominantly oleic acid accompanied with eicosapentaenoic acid) and fraction M12c as another triglyceride substituted with eicosapentaenoic acid and saturated fatty acids. Bioactive triglyceride contained in M12c exerted the highest antiproliferative activity with an IC50 of 11.33 ± 5.6 µg/mL. Biological activity in shrimp had been previously attributed to astaxanthin; this study demonstrated that polyunsaturated fatty acids are the main compounds responsible for antiproliferative activity.
Fractions from an organic extract from fresh octopus (Paraoctopus limaculatus) were studied for biological activities such as antimutagenic and antiproliferative properties using Salmonella tester strains TA98 and TA100 with metabolic activation (S9) and a cancer cell line (B-cell lymphoma), respectively. A chloroform extract obtained from octopus tentacles was sequentially fractionated using thin layer chromatography (TLC), and each fraction was tested for antimutagenic and antiproliferative activities. Organic extract reduced the number of revertants caused by aflatoxin B1 showing a dose-response type of relationship. Sequential TLC fractionation of the active extracts produced several antimutagenic and/or antiproliferative fractions. Based on the results obtained, the isolated fractions obtained from octopus contain compounds with chemoprotective properties that reduce the mutagenicity of AFB1 and proliferation of cancer cell lines.
A series of oxaazacyclophanes and oxaazacalix [4]arene analogues with 18-, 20-and 22-membered rings have been synthesized from diamine and dialdehyde building blocks and structurally characterized by spectroscopic methods. One diamine precursor and four macrocycles have additionally
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.