[1] Exposing Arizona Test Dust (ATD) particles to nitric acid vapor in an aerosol flow tube impaired subsequent deposition ice nucleation below water-saturation, but promoted condensation/immersion-freezing on approach to water saturation and had no apparent impact on freezing of activated droplets above water saturation. The fraction of particles capable of nucleating ice at −30°C was determined using a continuous flow diffusion chamber. Exposure to HNO 3 at 26% relative humidity with respect to water (RH w ) reduced the fraction of particles subsequently nucleating ice to below our quantification limit in the deposition nucleation regime below 97% RH w , while leading to a sharper step-wise increase in ice nucleation between 97-100% RH w compared to unreacted dust. These observations contrast with the effect of concentrated sulfuric acid condensation, which in most cases has been reported to reduce ice nucleation of ATD and other dusts both below and above water saturation. Citation: Sullivan,
Atmospheric aerosols typically consist of inorganic and organic material. Although the organic fraction can affect the behavior of mixed organic/inorganic particles, their physical properties are not well-understood. In this work, infrared spectra of internally mixed submicrometer particles of ammonium sulfate and succinic acid have been studied at ambient temperature in an aerosol flow cell. The spectra of dried particles show distinct features relative to the pure components, as a result of ion-molecule interactions between the inorganic and organic species. The hygroscopic behavior of the particles has been followed for several organic/inorganic mass ratios, showing that around equimolar composition, the mixed particles uptake water in a broad range of relative humidities (30-80%), substantially lower than the deliquescence relative humidity of the mixed system near 80%. Infrared spectra at predeliquescence relative humidities reveal that succinic acid is partially or completely in the liquid phase at much higher concentrations that those corresponding to a saturated solution of succinic acid. This behavior is proposed to arise from the ion-molecule interactions between the organic and inorganic components, which unstabilize the crystal structure relative to the pure solids and cause loss of translational order in the crystal, bringing about an increase in the Gibbs energy of the solid particles and allowing the uptake of water molecules prior to the deliquescence point. The obtained results show that water absorption prior to full deliquescence in this system has to be taken into account because it extends the range of relative humidities at which particles are partially or completely liquid.
ObjectiveAerosol delivery holds potential to release surfactant or perfluorocarbon (PFC) to the lungs of neonates with respiratory distress syndrome with minimal airway manipulation. Nevertheless, lung deposition in neonates tends to be very low due to extremely low lung volumes, narrow airways and high respiratory rates. In the present study, the feasibility of enhancing lung deposition by intracorporeal delivery of aerosols was investigated using a physical model of neonatal conducting airways.MethodsThe main characteristics of the surfactant and PFC aerosols produced by a nebulization system, including the distal air pressure and air flow rate, liquid flow rate and mass median aerodynamic diameter (MMAD), were measured at different driving pressures (4–7 bar). Then, a three-dimensional model of the upper conducting airways of a neonate was manufactured by rapid prototyping and a deposition study was conducted.ResultsThe nebulization system produced relatively large amounts of aerosol ranging between 0.3±0.0 ml/min for surfactant at a driving pressure of 4 bar, and 2.0±0.1 ml/min for distilled water (H2Od) at 6 bar, with MMADs between 2.61±0.1 µm for PFD at 7 bar and 10.18±0.4 µm for FC-75 at 6 bar. The deposition study showed that for surfactant and H2Od aerosols, the highest percentage of the aerosolized mass (∼65%) was collected beyond the third generation of branching in the airway model. The use of this delivery system in combination with continuous positive airway pressure set at 5 cmH2O only increased total airway pressure by 1.59 cmH2O at the highest driving pressure (7 bar).ConclusionThis aerosol generating system has the potential to deliver relatively large amounts of surfactant and PFC beyond the third generation of branching in a neonatal airway model with minimal alteration of pre-set respiratory support.
Abstract. In order to accurately assess the influence of fatty acids on the hygroscopic and other physicochemical properties of sea salt aerosols, hexanoic, octanoic or lauric acid together with sodium halide salts (NaCl, NaBr and NaI) have been chosen to be investigated in this study. The hygroscopic properties of sodium halide sub-micrometre particles covered with organic acids have been examined by Fourier-transform infrared spectroscopy in an aerosol flow cell. Covered particles were generated by flowing atomized sodium halide particles (either dry or aqueous) through a heated oven containing the gaseous acid. The obtained results indicate that gaseous organic acids easily nucleate onto dry and aqueous sodium halide particles. On the other hand, scanning electron microscopy (SEM) images indicate that lauric acid coating on NaCl particles makes them to aggregate in small clusters. The hygroscopic behaviour of covered sodium halide particles in deliquescence mode shows different features with the exchange of the halide ion, whereas the organic surfactant has little effect in NaBr particles, NaCl and NaI covered particles experience appreciable shifts in their deliquescence relative humidities, with different trends observed for each of the acids studied. In efflorescence mode, the overall effect of the organic covering is to retard the loss of water in the particles. It has been observed that the presence of gaseous water in heterogeneously nucleated particles tends to displace the cover of hexanoic acid to energetically stabilize the system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.