Applying nanotechnology to plant science requires efficient systems for the delivery of nanoparticles (NPs) to plant cells and tissues. The presence of a cell wall in plant cells makes it challenging to extend the NP delivery methods available for animal research. In this work, research is presented which establishes an efficient NP delivery system for plant tissues using the biolistic method. It is shown that the biolistic delivery of mesoporous silica nanoparticle (MSN) materials can be improved by increasing the density of MSNs through gold plating. Additionally, a DNA-coating protocol is used based on calcium chloride and spermidine for MSN and gold nanorods to enhance the NP-mediated DNA delivery. Furthermore, the drastic improvement of NP delivery is demonstrated when the particles are combined with 0.6 μm gold particles during bombardment. The methodology described provides a system for the efficient delivery of NPs into plant cells using the biolistic method.
The Escherichia coli heat-labile enterotoxin B subunit (LT-B) has been used as a model antigen for the production of plant-derived high-valued proteins in maize. LT-B with its native signal peptide (BSP) has been shown to accumulate in starch granules of transgenic maize kernels. To elucidate the targeting properties of the bacterial LT-B protein and BSP in plant systems, the subcellular localization of visual marker green fluorescent protein (GFP) fused to LT-B and various combinations of signal peptides was examined in Arabidopsis protoplasts and transgenic maize. Biochemical analysis indicates that the LT-B::GFP fusion proteins can assemble and fold properly retaining both the antigenicity of LT-B and the fluorescing properties of GFP. Maize kernel fractionation revealed that transgenic lines carrying BSP result in recombinant protein association with fibre and starch fractions. Confocal microscopy analysis indicates that the fusion proteins accumulate in the endomembrane system of plant cells in a signal peptide-dependent fashion. This is the first report providing evidence of the ability of a bacterial signal peptide to target proteins to the plant secretory pathway. The results provide important insights for further understanding the heterologous protein trafficking mechanisms and for developing effective strategies in molecular farming.
A novel, efficient maize genetic transformation system was developed using Agrobacterium-mediated transformation of embryo explants from mature seeds. Seeds from field grown plants were sterilized and crushed to isolate embryo explants consisting of the coleoptile, leaf primordia, and shoot apical meristem which were then purified from the ground seed bulk preparation. The infection of relevant tissues of seed embryo explants (SEEs) by Agrobacterium was improved by the centrifugation of the explants. Transgenic plants were obtained by multiple bud induction on high cytokinin media, followed by plant regeneration on hormone-free medium. Three different selectable markers (cp4 epsps, aadA, and nptII) were successfully used for producing transgenic plants. Stable integration of transgenes in the maize genome was demonstrated by molecular analyses and germline transmission of the inserted transgenes to the next generation was confirmed by pollen segregation and progeny analysis. Phenotypic evidence for chimeric transgenic tissue was frequently observed in initial experiments but was significantly reduced by including a second bud induction step with optimized cytokinin concentration. Additional improvements, including culturing explants at an elevated temperature during bud induction led to the development of a revolutionary system for efficient transgenic plant production and genome editing. To our knowledge, this is the first report of successful transgenic plant regeneration through Agrobacterium-mediated transformation of maize mature SEEs. This system starts with mature seed that can be produced in large volumes and the SEEs explants are storable. It has significant advantages in terms of scalability and flexibility over methods that rely on immature explants.
The production of recombinant proteins in plants continues to be of great interest for prospective large-scale manufacturing of industrial enzymes, nutrition products, and vaccines. This work describes fractionation by wet-milling of transgenic maize expressing the B subunit of the heat-labile enterotoxin of Escherichia coli (LT-B), a potent immunogen and candidate for oral vaccine and vaccine components. The LT-B gene was directed to express in seed by an endosperm specific promoter. Two steeping treatments, traditional steeping (TS, 0.2% SO(2) + 0.5% lactic acid) and water steeping (WS, water only), were evaluated to determine effects on recovery of functional LT-B in wet-milled fractions. The overall recovery of the LT-B protein from WS treatment was 1.5-fold greater than that from TS treatment. In both steeping types, LT-B was distributed similarly among the fractions, resulting in enrichment of functional LT-B in fine fiber, coarse fiber and pericarp fractions by concentration factors of 1.5 to 8 relative to the whole kernels on a per-mass basis. Combined with endosperm-specific expression and secretory pathway targeting, wet-milling enables enrichment of high-value recombinant proteins in low-value fractions, such as the fine fiber, and co-utilization of remaining fractions in alternative industrial applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.