Disturbances in sphingolipid metabolism lead to biological function dysregulation in many diseases, but it has not been described in heart failure (HF). Sphingosine-1-phosphate (S1P) levels have not ever been measured in the myocardium. Therefore, we analyze the gene dysregulation of human cardiac tissue by mRNA-seq (n = 36) and ncRNA-seq (n = 50). We observed most major changes in the expression of genes belonging to de novo and salvage pathways, and the tight gene regulation by their miRNAs is largely dysregulated in HF. We verified using ELISA (n = 41) that ceramide and S1P accumulate in HF cardiac tissue, with an increase in the ceramide/S1P ratio of 57% in HF. Additionally, changes in left ventricular mass and diameters are directly related to CERS1 expression and inversely related to S1P levels. Altogether, we define changes in the main components of the sphingolipid metabolism pathways in HF, mainly de novo and salvage, which lead to an increase in ceramide and S1P in cardiac tissue, as well as an increase in the ceramide/S1P ratio in HF patients. Therapeutic gene modulation focused on restoring ceramide levels or reversing the ceramide/S1P ratio could be a potential therapy to be explored for HF patients.
Acute rejection after heart transplantation increases the risk of chronic dysfunction. Disturbances in mitochondrial function may play a contributory role, however, the relationship between histological signs of rejection in the human transplanted heart and expression levels of circulating mitochondrial genes, such as the mitochondrial Ca2+ uniporter (MCU) complex, remains unexplored. We conducted an RNA‐sequencing analysis to identify altered mitochondrial genes in serum and to evaluate their diagnostic accuracy for rejection episodes. We included 40 consecutive samples from transplant recipients undergoing routine endomyocardial biopsies. In total, 112 mitochondrial genes were identified in the serum of posttransplant patients, of which 28 were differentially expressed in patients with acute rejection (p < .05). Considering the receiver operating characteristic analysis with an area under the curve (AUC) >0.900 to discriminate patients with moderate or severe degrees of rejection, we found that the MCU system showed a strong capability for detection: MCU (AUC = 0.944, p < .0001), MCU/MCUR1 ratio (AUC = 0.972, p < .0001), MCU/MCUB ratio (AUC = 0.970, p < .0001), and MCU/MICU1 ratio (AUC = 0.970, p < .0001). Mitochondrial alterations are reflected in peripheral blood and are capable of discriminating between patients with allograft rejection and those not experiencing rejection with excellent accuracy. The dysregulation of the MCU complex was found to be the most relevant finding.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.