The dual-specificity tyrosine phosphorylation-regulated kinase DYRK1A is a serine/threonine kinase involved in neuronal differentiation and synaptic plasticity and a major candidate of Down syndrome brain alterations and cognitive deficits. DYRK1A is strongly expressed in the cerebral cortex, and its overexpression leads to defective cortical pyramidal cell morphology, synaptic plasticity deficits, and altered excitation/inhibition balance. These previous observations, however, do not allow predicting how the behavior of the prefrontal cortex (PFC) network and the resulting properties of its emergent activity are affected. Here, we integrate functional, anatomical, and computational data describing the prefrontal network alterations in transgenic mice overexpressing Dyrk1A (TgDyrk1A). Using in vivo extracellular recordings, we show decreased firing rate and gamma frequency power in the prefrontal network of anesthetized and awake TgDyrk1A mice. Immunohistochemical analysis identified a selective reduction of vesicular GABA transporter punctae on parvalbumin positive neurons, without changes in the number of cortical GABAergic neurons in the PFC of TgDyrk1A mice, which suggests that selective disinhibition of parvalbumin interneurons would result in an overinhibited functional network. Using a conductance-based computational model, we quantitatively demonstrate that this alteration could explain the observed functional deficits including decreased gamma power and firing rate. Our results suggest that dysfunction of cortical fast-spiking interneurons might be central to the pathophysiology of Down syndrome.
Immersive virtual reality is widely used for research and clinical purposes. Here we explored the impact of an immersive virtual scene of intimate partner violence experienced from the victim's perspective (first person), as opposed to witnessing it as an observer (third person). We are ultimately interested in the potential of this approach to rehabilitate batterers and in understanding the mechanisms underlying this process. For this, non-offender men experienced the scene either from the perspective of the victim's virtual body (a female avatar), which moved synchronously with the participants' real movements, or from the perspective of an observer, while we recorded their behavior and physiological responses. We also evaluated through questionnaires, interviews and implicit association tests their subjective impressions and potential pre/post changes in implicit gender bias following the experience. We found that in all participants, regardless of perspective, the magnitude of the physiological reactions to virtual threatening stimuli was related to how vulnerable they felt for being a woman, the sensation that they could be assaulted, how useful the scene could be for batterer rehabilitation, and how different it would have been to experience the scenario on TV. Furthermore, we found that their level of identification with the female avatar correlated with the decrease in prejudice against women. Although the first-person perspective (1PP) facilitated taking the scene personally, generated a sensation of fear, helplessness, and vulnerability, and tended to induce greater behavioral and physiological reactions, we show that the potential for batterer rehabilitation originates from presence and identification with the victim, which in turn is more easily, but not exclusively, achieved through 1PP. This study is relevant for the development of advanced virtual reality tools for clinical purposes.
Quantitative estimations of spatiotemporal complexity of cortical activity patterns are used in the clinic as a measure of consciousness levels, but the cortical mechanisms involved are not fully understood. We used a version of the Perturbational Complexity Index adapted to multisite recordings from the ferret (either sex) cerebral cortex in vitro (sPCI) to investigate the role of GABAergic inhibition in cortical complexity. We studied two dynamical states: slow-wave activity (synchronous state) and desynchronized activity, that express low and high causal complexity respectively.Progressive blockade of GABAergic inhibition during both regimes revealed its impact on the emergent cortical activity and on sPCI. Gradual GABA A receptor blockade resulted in higher synchronization, being able to drive the network from a desynchronized to a synchronous state, with a progressive decrease of complexity (sPCI). Blocking GABA B receptors also resulted in a reduced sPCI, in particular when in a synchronous, slow wave state. Our findings demonstrate that physiological levels of inhibition contribute to the generation of dynamical richness and spatiotemporal complexity. However, if inhibition is diminished or enhanced, cortical complexity decreases. Using a computational model, we explored a larger parameter space in this relationship and demonstrate a link between excitatory/inhibitory balance and the complexity expressed by the cortical network. 3 Significance statementThe spatiotemporal complexity of the activity expressed by the cerebral cortex is a highly revealing feature of the underlying network's state. Complexity varies with physiological brain states: it is higher during awake than during sleep states. But it also informs about pathological states: in disorders of consciousness, complexity is lower in an unresponsive wakefulness syndrome than in a minimally conscious state. What are the network parameters that modulate complexity? Here we investigate how inhibition, mediated by either GABA A or GABA B -Rs, influences cortical complexity. And we do this departing from two extreme functional states: a highly synchronous, slow-wave state, and a desynchronized one that mimics wakefulness. We find that there is an optimal level of inhibition in which complexity is highest.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.