Breakthroughs from the field of deep learning are radically changing how sensor data are interpreted to extract the high-level information needed by mobile apps. It is critical that the gains in inference accuracy that deep models afford become embedded in future generations of mobile apps. In this work, we present the design and implementation of DeepX, a software accelerator for deep learning execution. DeepX significantly lowers the device resources (viz. memory, computation, energy) required by deep learning that currently act as a severe bottleneck to mobile adoption. The foundation of DeepX is a pair of resource control algorithms, designed for the inference stage of deep learning, that: (1) decompose monolithic deep model network architectures into unit-blocks of various types, that are then more efficiently executed by heterogeneous local device processors (e.g., GPUs, CPUs); and (2), perform principled resource scaling that adjusts the architecture of deep models to shape the overhead each unit-blocks introduces. Experiments show, DeepX can allow even large-scale deep learning models to execute efficiently on modern mobile processors and significantly outperform existing solutions, such as cloud-based offloading.
Recently, sound-based COVID-19 detection studies have shown great promise to achieve scalable and prompt digital prescreening. However, there are still two unsolved issues hindering the practice. First, collected datasets for model training are often imbalanced, with a considerably smaller proportion of users tested positive, making it harder to learn representative and robust features. Second, deep learning models are generally overconfident in their predictions. Clinically, false predictions aggravate healthcare costs. Estimation of the uncertainty of screening would aid this. To handle these issues, we propose an ensemble framework where multiple deep learning models for sound-based COVID-19 detection are developed from different but balanced subsets from original data. As such, data are utilized more effectively compared to traditional up-sampling and down-sampling approaches: an AUC of 0.74 with a sensitivity of 0.68 and a specificity of 0.69 is achieved. Simultaneously, we estimate uncertainty from the disagreement across multiple models. It is shown that false predictions often yield higher uncertainty, enabling us to suggest the users with certainty higher than a threshold to repeat the audio test on their phones or to take clinical tests if digital diagnosis still fails. This study paves the way for a more robust sound-based COVID-19 automated screening system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.