Understanding diversity in complex urban systems is fundamental in facing current and future sustainability challenges. In this article, we apply an exploratory multivariate statistical analysis (i.e., Principal Component Analysis (PCA) and Multiple Factor Analysis (MFA)) to an urban system’s abstraction of the city’s functioning. Specifically, we relate the environmental, economical, and social characters of the city in a multivariate system of indicators by collecting measurements of those variables at the district scale. Statistical methods are applied to reduce the dimensionality of the multivariate dataset, such that, hidden relationships between the districts of the city are exposed. The methodology has been mainly designed to display diversity, being understood as differentiated attributes of the districts in their dimensionally-reduced description, and to measure it with Euclidean distances. Differentiated characters and distinctive functions of districts are identifiable in the exploratory analysis of a case study of Barcelona (Spain). The distances allow for the identification of clustered districts, as well as those that are separated, exemplifying dissimilarity. Moreover, the temporal dependency of the dataset reveals information about the district’s differentiation or homogenization trends between 2003 and 2015.
One challenging problem is the representation of three-dimensional datasets that vary with time. These datasets can be though as a cloud of points that gradually deforms. But point-wise variations lack of information about the overall deformation pattern, and more importantly, about the extreme deformation locations inside the cloud. The present article applies a technique in computational mechanics to derive the strain-rate state of a time-dependent and three-dimensional data distribution, by which one can characterize its main trends of shift. Indeed, the tensorial analysis methodology is able to determine the global deformation rates in the entire dataset. With the use of this technique, one can characterize the significant fluctuations in a reduced multivariate description of an urban system and identify the possible causes of those changes: calculating the strain-rate state of a PCA-based multivariate description of an urban system, we are able to describe the clustering and divergence patterns between the districts of the city and to characterize the temporal rate in which those variations happen.
One challenging problem is the representation of three-dimensional datasets that vary with time. These datasets can be thought of as a cloud of points that gradually deforms. However, point-wise variations lack information about the overall deformation pattern, and, more importantly, about the extreme deformation locations inside the cloud. This present article applies a technique in computational mechanics to derive the strain-rate state of a time-dependent and three-dimensional data distribution, by which one can characterize its main trends of shift. Indeed, the tensorial analysis methodology is able to determine the global deformation rates in the entire dataset. With the use of this technique, one can characterize the significant fluctuations in a reduced multivariate description of an urban system and identify the possible causes of those changes: calculating the strain-rate state of a PCA-based multivariate description of an urban system, we are able to describe the clustering and divergence patterns between the districts of a city and to characterize the temporal rate in which those variations happen.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.