To understand and tackle amyloid-related diseases, it is crucial to investigate the factors that modulate amyloid formation of proteins. Our previous studies proved that the N47A mutant of the α-spectrin SH3 (Spc-SH3) domain forms amyloid fibrils quickly under mildly acidic conditions. Here, we analyze how experimental conditions influence the kinetics of assembly and the final morphology of the fibrils. Early formation of curly fibrils occurs after a considerable conformational change of the protein and the concomitant formation of small oligomers. These processes are strongly accelerated by an increase in salt concentration and temperature, and to a lesser extent by a reduction in pH. The rate-limiting step in these events has a high activation enthalpy, which is significantly reduced by an increase in NaCl concentration. At low-to-moderate NaCl concentrations, the curly fibrils convert to straight and twisted amyloid fibrils after long incubation times, but only in the presence of soluble species in the mixture, which suggests that the curly fibrils and the twisted amyloid fibrils are diverging assembly pathways. The results suggest that the influence of environmental variables on protein solvation is crucial in determining the nucleation kinetics, the pathway of assembly, and the final fibril morphology.
In contrast to the thermal unfolding of native proteins, very few studies of the thermally induced melting of amyloid fibrils have been reported to date due to the complex nature of these protein aggregates and the lack of theoretical formalisms to rationalize the data. In this work, we analyzed the thermal melting of the amyloid fibrils of the N47A mutant of the alpha-spectrin SH3 domain by differential scanning calorimetry (DSC). The thermal melting of the isolated fibrils occurred in single endothermic transitions, yielding the fully unfolded protein. The enthalpy and heat capacity changes of fibril melting were significantly lower than those of the unfolding of the native protein, indicating a lower density of interactions and a higher solvent-exposed surface area for the protein within the fibrils relative to the native state. In addition, these magnitudes did not change significantly between fibrils showing different morphology. The independence of the transitions with the scan rate and the observation of a considerable mass-action-like effect upon the melting temperatures indicated that the fibril melting is not separated significantly from equilibrium and could be considered in good approximation as a reversible process. A simple equilibrium model of polymerization coupled to monomer unfolding allowed us for the first time to interpret quantitatively the thermal melting of amyloid fibrils. The model captured very well the general features of the thermal behavior of amyloid fibrils and allowed us to estimate the partitioning of the energy of overall melting into the unfolding of monomers and fibril elongation. We conclude that with the use of appropriate models of analysis DSC has an extraordinary potential to analyze the thermodynamic determinants of amyloid fibril stability.
Understanding the earliest molecular events during nucleation of the amyloid aggregation cascade is of fundamental significance to prevent amyloid related disorders. We report here an experimental kinetic analysis of the amyloid aggregation of the N47A mutant of the α-spectrin SH3 domain (N47A Spc-SH3) under mild acid conditions, where it is governed by rapid formation of amyloid nuclei. The initial rates of formation of amyloid structures, monitored by thioflavine T fluorescence at different protein concentrations, agree quantitatively with high-order kinetics, suggesting an oligomerization pre-equilibrium preceding the rate-limiting step of amyloid nucleation. The curves of native state depletion also follow high-order irreversible kinetics. The analysis is consistent with the existence of low-populated and heterogeneous oligomeric precursors of fibrillation that form by association of partially unfolded protein monomers. An increase in NaCl concentration accelerates fibrillation but reduces the apparent order of the nucleation kinetics; and a double mutant (K43A, N47A) Spc-SH3 domain, largely unfolded under native conditions and prone to oligomerize, fibrillates with apparent first order kinetics. On the light of these observations, we propose a simple kinetic model for the nucleation event, in which the monomer conformational unfolding and the oligomerization of an amyloidogenic intermediate are rapidly pre-equilibrated. A conformational change of the polypeptide chains within any of the oligomers, irrespective of their size, is the rate-limiting step leading to the amyloid nuclei. This model is able to explain quantitatively the initial rates of aggregation and the observed variations in the apparent order of the kinetics and, more importantly, provides crucial thermodynamic magnitudes of the processes preceding the nucleation. This kinetic approach is simple to use and may be of general applicability to characterize the amyloidogenic intermediates and oligomeric precursors of other disease-related proteins.
a b s t r a c tWe investigated the relationship between thermodynamic stability and amyloid aggregation propensity for a set of single mutants of the alpha-spectrin SH3 domain (Spc-SH3). Whilst mutations destabilizing the domain at position 56 did not enhance fibrillation, the N47A mutation increased the rate of amyloid fibril formation by 10-fold. Even under conditions of identical thermodynamic stability, the aggregation rate was much higher for the N47A mutant than for the WT domain. We conclude that the N47A mutation does not change the apparent mechanism of fibrillation or the morphology of the amyloid fibrils, and that its amyloidogenic property is due to its effect upon the rate of the conformational events leading to nucleation and not to its overall destabilizing effect.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.