The detection of mirrors is a challenging task due to their lack of a distinctive appearance and the visual similarity of reflections with their surroundings. While existing systems have achieved some success in mirror segmentation, the design of lightweight models remains unexplored, and datasets are mostly limited to clear mirrors in indoor scenes. In this paper, we propose a new dataset consisting of 454 images of outdoor mirrors and reflective surfaces. We also present a lightweight edge-guided convolutional neural network based on PMDNet. Our model uses EfficientNetV2-Medium as its backbone and employs parallel convolutional layers and a lightweight convolutional block attention module to capture both low-level and high-level features for edge extraction. It registered maximum F-measure scores of 0.8483, 0.8117, and 0.8388 on the Mirror Segmentation Dataset (MSD), Progressive Mirror Detection (PMD) dataset, and our proposed dataset, respectively. Applying filter pruning via geometric median resulted in maximum F-measure scores of 0.8498, 0.7902, and 0.8456, respectively, performing competitively with the state-of-the-art PMDNet but with 78.20x fewer floating-point operations per second and 238.16x fewer parameters. The code and dataset are available at https://github.com/memgonzales/mirror-segmentation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.