For future integration into building facades or overhead glazing, the direct deposition of organic solar modules on glass substrates in sheet‐to‐sheet processes may be more cost efficient than postproduction lamination. Complying with the special requirements for the deposition of the layer stack on glass substrates, we report on all‐doctor‐bladed organic solar modules yielding power conversion efficiencies of 4.5 and 3.6 % on photoactive areas of 1 and 20 cm2, respectively. The bottom electrode is doctor bladed from a silver ink atop an adhesion enhancing primer. The top electrode is applied from silver nanowires, dispersed in poly(3,4‐ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS), which thereby avoids any visible bus bars and reduces shading of the active layer. Importantly, all layers are deposited under ambient conditions by using only non‐chlorinated, eco‐compatible solvents.
We demonstrate modular modifications of the widely employed emitter 2,4,5,6-tetra(9H-carbazol-9-yl)isophthalonitrile (4CzIPN) by replacing one or both nitrile acceptors with oxadiazole groups via a tetrazole intermediate. This allows the introduction of various functional groups including halides, alkynes, alkenes, nitriles, esters, ethers and a protected amino acid while preserving the thermally activated delayed fluorescence (TADF) properties. The substituents control the emission maximum of the corresponding emitters, ranging between 472-527 nm, and show high solid-state photoluminescence quantum yields up to 85 %. The TADF emission of two compounds, 4CzCNOXDtBu and 4CzdOXDtBu, a mono-and a bis-oxadiazole substituted 4CzIPN is characterized in detail by time-and temperaturedependent photoluminescence. Solution-processed OLEDs comprising 4CzCNOXDtBu and 4CzdOXDtBu show a significant blue-shift of the emission compared to the reference 4CzIPN, with external quantum efficiencies of 16 %, 5.9 % and 17 % at 100 cd m À 2 , respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.