A growing interest is devoted to global-scale approaches in ecology and evolution that examine patterns and determinants of species diversity and the threats resulting from global change. These analyses obviously require global datasets of species distribution. Freshwater systems house a disproportionately high fraction of the global fish diversity considering the small proportion of the earth’s surface that they occupy, and are one of the most threatened habitats on Earth. Here we provide complete species lists for 3119 drainage basins covering more than 80% of the Earth surface using 14953 fish species inhabiting permanently or occasionally freshwater systems. The database results from an extensive survey of native and non-native freshwater fish species distribution based on 1436 published papers, books, grey literature and web-based sources. Alone or in combination with further datasets on species biological and ecological characteristics and their evolutionary history, this database represents a highly valuable source of information for further studies on freshwater macroecology, macroevolution, biogeography and conservation.
Aquatic insects are the dominant taxon group in most freshwater ecosystems. As temperature is the main driver of their life cycle development, metabolic activity, and geographic distribution, these macroinvertebrates are particularly suitable for large scale and comparative studies of freshwater community responses to climate change. A dataset of bioecological traits of 1,942 Ephemeroptera, Plecoptera, and Trichoptera (EPT) taxa was used to analyze (1) the relationships among traits, (2) the potential vulnerability of EPT species to climate change, and (3) the geographical occurrence patterns of these potentially endangered species at the scale of European ecoregions. By means of a fuzzy correspondence analysis (FCA), two gradients emerged: (1) a longitudinal gradient, describing successive upstreamdownstream features, and (2) a biogeographical gradient, separating endemic and micro-endemic species from widely distributed taxa. Moreover, aquatic insects of southern European ecoregions emerged as those most endangered in terms of potential vulnerability to climate change. Comparative multi-taxon studies provide important new insights into freshwater ecosystem functioning and responses to climate change, and could be the first step toward developing integrative monitoring or assessment tools (e.g., traitbased indicators at the species level) by means of nonarbitrary statistical methods. Keywords Vulnerability Á Aquatic insects Á Bio-ecological traits Á Climate change Handling editor: Nuria Bonada
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.