Abstract. This paper provides sufficient conditions for the boundedness of Weyl operators on modulation spaces. The Weyl symbols belong to Wiener amalgam spaces, or generalized modulation spaces, as recently renamed by their inventor Hans Feichtinger. This is the first result which relates symbols in Wiener amalgam spaces to operators acting on classical modulation spaces.
We study the stiff spectral Neumann problem for the Laplace operator in a smooth bounded domain Ω ⊂ R d which is divided into two subdomains: an annulus Ω 1 and a core Ω 0 . The density and the stiffness constants are of order ε − 2 m and ε − 1 in Ω 0 , while they are of order 1 in Ω 1 . Here m ∈ R is fixed and ε > 0 is small. We provide asymptotics for the eigenvalues and the corresponding eigenfunctions as ε → 0 for any m. In dimension 2 the case when Ω 0 touches the exterior boundary ∂ Ω and Ω 1 gets two cusps at a point O is included into consideration. The possibility to apply the same asymptotic procedure as in the “smooth” case is based on the structure of eigenfunctions in the vicinity of the irregular part. The full asymptotic series as x → O for solutions of the mixed boundary value problem for the Laplace operator in the cuspidal domain is given.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.