Tight junctions (TJs) regulate the passage of ions and molecules through the paracellular pathway in epithelial and endothelial cells. TJs are highly dynamic structures whose degree of sealing varies according to external stimuli, physiological and pathological conditions. In this review we analyze how the crosstalk of protein kinase C, protein kinase A, myosin light chain kinase, mitogen-activated protein kinases, phosphoinositide 3-kinase and Rho signaling pathways is involved in TJ regulation triggered by diverse stimuli. We also report how the phosphorylation of the main TJ components, claudins, occludin and ZO proteins, impacts epithelial and endothelial cell function.
A fundamental function of epithelia and endothelia is to separate different compartments within the organism and to regulate the exchange of substances between them. The tight junction (TJ) constitutes the barrier both to the passage of ions and molecules through the paracellular pathway and to the movement of proteins and lipids between the apical and the basolateral domains of the plasma membrane. In recent years more than 40 different proteins have been discovered to be located at the TJs of epithelia, endothelia and myelinated cells. This unprecedented expansion of information has changed our view of TJs from merely a paracellular barrier to a complex structure involved in signaling cascades that control cell growth and differentiation. Both cortical and transmembrane proteins integrate TJs. Among the former are scaffolding proteins containing PDZ domains, tumor suppressors, transcription factors and proteins involved in vesicle transport. To date two components of the TJ filaments have been identified: occludin and claudin. The latter is a protein family with more than 20 members. Both occludin and claudins are integral proteins capable of interacting adhesively with complementary molecules on adjacent cells and of co-polymerizing laterally. These advancements in the knowledge of the molecular structure of TJ support previous physiological models that exhibited TJ as dynamic structures that present distinct permeability and morphological characteristics in different tissues and in response to changing natural, pathological or experimental conditions.
Synthesis and assembly of tight junctions are studied in monolayers of MDCK cells plated at a density sufficient for confluence, allowed to attach for 1 hr, and transferred to fresh media without cells containing or not Ca2+. 20 hr later, while monolayers with Ca2+ have fully developed junctions that confer an electrical resistance across of 346 +/- 51 omega cm2, those without Ca2+ have a negligible resistance. If at this time Ca2+ is added, junctions assemble and seal with a fast kinetics, that can be followed through the development of electrical resistance, penetration of ruthenium red, and electron microscopy. Drugs that impair synthesis, maturation and transport of proteins (cycloheximide, tunicamycin, monensin) indicate that protein components are synthesized early upon plating, do not seem to require N-glycosylation, and are stored in the Golgi compartment. Upon addition of Ca2+ they are transferred to the membrane with the participation of microfilaments but not of microtubules. These components seem to insert directly in the position they occupy in the strands, and the cell circles its perimeter with one strand as early as 15 min, even if in some segments it only consists of a row of particles. New strands develop in association with previous ones, and the pattern completes in 4 to 6 hr. Ca2+ is required for the maintenance of the assembly and also for the sealing with neighboring cells. These processes cannot occur below 25 degrees C. Serum is not required. Polarized distribution of intramembrane particles (IMP) in apical and basolateral regions follows the same time course as junction formation, in spite of the fence constituted by those strands that are already assembled. This suggests that IMP do not redistribute by lateral displacements in the plane of the membrane, but by removal and insertion in the apical and basolateral domains.
Abstract. Extracellular Ca 2÷ triggers assembly and sealing of tight junctions (TJs) in MDCK cells. These events are modulated by G-proteins, phospholipase C, protein kinase C (PKC), and calmodulin. In the present work we observed that 1,2-dioctanoylglycerol (diC8) promotes the assembly of TJ in low extracellular Ca 2÷, as evidenced by translocation of the TJassociated protein ZO-1 to the plasma membrane, formation of junctional fibrils observed in freeze-fracture replicas, decreased permeability of the intercellular space to [3H]mannitol, and reorganization of actin illaments to the cell periphery, visualized by fluorescence microscopy using rhodamine-phalloidin. In contrast, diC8 in low Ca 2÷ did not induce redistribution of the Ca-dependent adhesion protein E-cadherin (uvomorulin). Extracellular antibodies to E-cadherin block junction formation normally induced by adding Ca 2+. die8 counteracted this inhibition, suggesting that PKC may be in the signaling pathway activated by E-cadherinmediated cell-cell adhesion.In addition, we found a novel phosphoprotein of 130 kD which coimmunoprecipitated with the ZO-1/ZO-2 complex. Although the assembly and sealing of TJs may involve the activation of PKC, the level of phosphorylation of ZO-1, ZO-2, and the 130-kD protein did not change after adding Ca 2+ or a PKC agonist. The complex of these three proteins was present even in low extracellular Ca 2+, suggesting that the addition of Ca 2+ or diC8 triggers the translocation and assembly of preformed TJ subcomplexes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.