We have explored the synthesis of iron oxide particles, tubes, and fibrils within the pores of nanoporous polycarbonate and alumina membranes. The membranes contain uniformly distributed cylindrical pores with monodispersed diameters (varying between 20 and 200 nm) and thicknesses of 6 and 60 microm, respectively. By hydrolysis and polymerization of iron salts, particles of different sizes and phases were formed in the pores, building iron oxide particle nanowires. Alternatively, by the sol-gel technique, using as reagents metalloorganic compounds, fibrils and tubes of different iron oxide phases were prepared. Structural and morphological investigations performed using scanning electron microscopy and transmission electron microscopy revealed ordered iron oxide particle wires, tubes, and fibrils formed inside the membrane nanopores. Magnetic characterization was accomplished with a vibrating sample magnetometer. Below the blocking temperature (T(B)), the magnetic behavior of the nanowires was governed by dipolar interaction between nearest-neighbor nanoparticles inside the pore, whereas the energy barrier, and therefore the T(B) value, was mainly governed by dipolar interaction between magnetic moments over larger (interpore) distances. As expected, crystalline iron oxide nanotubes exhibited magnetic perpendicular anisotropy due to their magnetocrystalline and shape anisotropy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.