Ab initio molecular dynamics simulations are reported for water-embedded TiO2 surfaces to determine the diffusive and reactive behavior at full hydration. A three-domain model is developed for six surfaces [rutile (110), (100), and (001), and anatase (101), (100), and (001)] which describes waters as “hard” (irreversibly bound to the surface), “soft” (with reduced mobility but orientation freedom near the surface), or “bulk.” The model explains previous experimental data and provides a detailed picture of water diffusion near TiO2 surfaces. Water reactivity is analyzed with a graph-theoretic approach that reveals a number of reaction pathways on TiO2 which occur at full hydration, in addition to direct water splitting. Hydronium (H3O+) is identified to be a key intermediate state, which facilitates water dissociation by proton hopping between intact and dissociated waters near the surfaces. These discoveries significantly improve the understanding of nanoscale water dynamics and reactivity at TiO2 interfaces under ambient conditions.
Arg, Lys and Asp amino acids are known to play a critical role in the adhesion of the RKLPDA engineered peptide on the (101) surface of the titania anatase phase. To understand their contribution to peptide adhesion, we have considered the relevant charge states due to protonation (Arg and Lys) or deprotonation (Asp) occurring in neutral water solution, and studied their adsorption on the (101) anatase TiO2 surface by ab initio total energy calculations based on density functional theory. The adsorption configurations on the hydrated surface are compared to those on the dry surface considering also the presence of the hydration shell around amino acid side-chains. This study explains how water molecules mediate the adsorption of charged amino acids showing that protonated amino acids are chemically adsorbed much more strongly than de-protonated Asp. Moreover it is shown that the polar screening of the hydration shell reduces the adsorption energy of the protonated amino acids to a small extent, thus evidencing that both Arg and Lys strongly adhere on the (101) anatase TiO2 surface in neutral water solution and that they play a major role in the adhesion of the RKLPDA peptide.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.