We propose and analyze a new formulation of the Linear Sampling Method that uses an exact characterization of the targets shape in terms of the so-called farfield operator (at a fixed frequency). This characterization is based on constructing nearby solutions of the farfield equation using minimizing sequences of a least squares cost functional with an appropriate penalty term. We first provide a general framework for the theoretical foundation of the method in the case of noise-free and noisy measurements operator. We then explicit applications for the case of inhomogeneous inclusions and indicate possible straightforward generalizations. We finally validate the method through some numerical tests and compare the performances with classical LSM and the factorization methods.
In this paper we develop a general mathematical framework to determine interior eigenvalues from a knowledge of the modified far field operator associated with an unknown (anisotropic) inhomogeneity. The modified far field operator is obtained by subtracting from the measured far field operator the computed far field operator corresponding to a well-posed scattering problem depending on one (possibly complex) parameter. Injectivity of this modified far field operator is related to an appropriate eigenvalue problem whose eigenvalues can be determined from the scattering data, and thus can be used to obtain information about material properties of the unknown inhomogeneity. We discuss here two examples of such modification leading to a Steklov eigenvalue problem, and a new type of the transmission eigenvalue problem. We present some numerical examples demonstrating the viability of our method for determining the interior eigenvalues form far field data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.