This paper presents a study on revenue active electrical energy meters. The huge installation along the distribution network of these devices made them a key element for energy billing, but also for monitoring the grid status. Hence, it is evident that the relevance of guaranteeing a trusty metering performance, and consequently a proper standardization, is needed. The operation of the meters is regulated by standards harmonized with the European Directive 2014/32/EU (known as MID). Still, and not infrequently, compliance to some legacy standards is declared on the device specifications. Thus, a brief comparison between the latest standards is presented. In particular, the focus was set on evaluating the potential impact of the harmonic disturbances on the energy meter accuracy, since they are omnipresent in the modern power networks. The evaluation has been carried out on three off-the-shelf class B meters by means of a new test procedure that considers realistic and quasi-realistic harmonic disturbances. Such tests showed that realistic harmonic disturbances affect significantly only some energy meters. Therefore, the standards should not neglect this kind of scenario.
The aim of this work is to assess whether actual distorted conditions of the network are really affecting the accuracy of inductive current transformers. The study started from the need to evaluate the accuracy performance of inductive current transformers in off-nominal conditions, and to improve the related standards. In fact, standards do not provide a uniform set of distorted waveforms to be applied on inductive or low-power instrument transformers. Moreover, there is no agreement yet, among the experts, about how to evaluate the uncertainty of the instrument transformer when the operating conditions are different from the rated ones. To this purpose, the authors collected currents from the power network and injected them into two off-the-shelf current transformers. Then, their accuracy performances have been evaluated by means of the well-known composite error index and an approximated version of it. The obtained results show that under realistic non-rated conditions of the network, the tested transformers show a very good behavior considering their nonlinear nature, arising the question in the title. A secondary result is that the use of the composite error should be more and more supported by the standards, considering its effectiveness in the accuracy evaluation of instrument transformers for measuring purposes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.