We study the propagation of super-horizon cosmological perturbations in a non-singular bounce spacetime. The model we consider combines a ghost condensate with a Galileon term in order to induce a ghost-free bounce. Our calculation is performed in harmonic gauge, which ensures that the linearized equations of motion remain well-defined and nonsingular throughout. We find that, despite the fact that near the bounce the speed of sound becomes imaginary, super-horizon curvature perturbations remain essentially constant across the bounce. In fact, we show that there is a time close to the bounce where curvature perturbations of all wavelengths are required to be momentarily exactly constant. We relate our calculations to those performed in other gauges, and comment on the relation to previous results in the literature. a lorenzo.battarra@aei.mpg.de b
The no-boundary proposal provides a compelling theory for the initial conditions of our universe. We study the implications of such initial conditions for ekpyrotic and cyclic cosmologies. These cosmologies allow for the existence of a new type of "ekpyrotic instanton", which describes the creation of a universe in the ekpyrotic contraction phase. Remarkably, we find that the ekpyrotic attractor can explain how the universe became classical. In a cyclic context, in addition to the ekpyrotic instantons there exist de Sitter-like instantons describing the emergence of the universe in the dark energy phase. Our results show that typically the ekpyrotic instantons yield a higher probability. In fact, in a potential energy landscape allowing both inflationary and cyclic cosmologies, the no-boundary proposal implies that the probability for ekpyrotic and cyclic initial conditions is vastly higher than that for inflationary ones.
We investigate in detail the properties of oscillating instanton solutions discussed recently in the literature. We find that the solutions with N nodes contain exactly N homogeneous negative modes in their spectrum of linear perturbations. The existence of extra negative modes for the N > 1 solutions suggest that they are not final state physical objects resulting from tunneling, but rather unstable intermediate thermal configurations. By contrast, the single negative mode for the N ¼ 1 instanton confirms its interpretation as mediating the curved-space tunneling between vacua with equal energy densities.
We examine the processes of quantum squeezing and decoherence of density perturbations produced during a slowly contracting ekpyrotic phase in which entropic perturbations are converted to curvature perturbations before the bounce to an expanding phase. During the generation phase, the entropic fluctuations evolve into a highly squeezed quantum state, analogous to the evolution of inflationary perturbations. Subsequently, during the conversion phase, quantum coherence is lost very efficiently due to the interactions of entropy and adiabatic modes. Moreover, while decoherence occurs, the adiabatic curvature perturbations inherit their semiclassicality from the entropic perturbations. Our results confirm that, just as for inflation, an ekpyrotic phase can generate nearly scale-invariant curvature perturbations which may be treated as a statistical ensemble of classical density perturbations, in agreement with observations of the cosmic background radiation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.