The use of Förster or fluorescence resonance energy transfer (FRET) as a spectroscopic technique has been in practice for over 50 years. A search of ISI Web of Science with just the acronym "FRET" returns more than 2300 citations from various areas such as structural elucidation of biological molecules and their interactions, in vitro assays, in vivo monitoring in cellular research, nucleic acid analysis, signal transduction, light harvesting and metallic nanomaterials. The advent of new classes of fluorophores including nanocrystals, nanoparticles, polymers, and genetically encoded proteins, in conjunction with ever more sophisticated equipment, has been vital in this development. This review gives a critical overview of the major classes of fluorophore materials that may act as donor, acceptor, or both in a FRET configuration. We focus in particular on the benefits and limitations of these materials and their combinations, as well as the available methods of bioconjugation.
Demand and deliver: Micelles reversibly crosslinked by boronate esters (see scheme) show in vitro and in vivo stability, and thus minimize premature drug release under physiological conditions. After reaching the tumor sites, drug (stars in scheme) release is activated by cleavage of the boronate esters by the acidic conditions around the tumor or in the target cells, or by the administration of mannitol.
Since the advent of practical methods for achieving DNA metallization, the use of nucleic acids as templates for the synthesis of inorganic nanoparticles (NPs) has become an active area of study. It is now widely recognized that nucleic acids have the ability to control the growth and morphology of inorganic NPs. These biopolymers are particularly appealing as templating agents as their ease of synthesis in conjunction with the possibility of screening nucleotide composition, sequence and length, provides the means to modulate the physico-chemical properties of the resulting NPs. Several synthetic procedures leading to NPs with interesting photophysical properties as well as studies aimed at rationalizing the mechanism of nucleic acid-templated NP synthesis are now being reported. This progress article will outline the current understanding of the nucleic acid-templated process and provides an up to date reference in this nascent field.
Self-assembly of proteins, peptides, DNA, and other biomolecules to semiconductor quantum dots (QD) is an attractive bioconjugation route that can circumvent many of the problems associated with covalent chemistry and subsequent purification. Polyhistidine sequences have been shown to facilitate self-assembly of proteins and peptides to ZnS-overcoated CdSe QDs via complexation to unoccupied coordination metal sites on the nanocrystal surface. We describe the synthesis and characterization of a thiol-reactive hexahistidine peptidic linker that can be chemically attached to thiolated-DNA oligomers and mediate their self-assembly to CdSe-ZnS core-shell QDs. The self-assembly of hexahistidine-appended DNA to QDs is probed with gel electrophoresis and fluorescence resonance energy transfer techniques, and the results confirm high-affinity conjugate formation with control over the average molar ratio of DNA assembled per QD. To demonstrate the potential of this reactive peptide linker strategy, a prototype QD-DNA-dye molecular beacon is self-assembled and tested against both specific and nonspecific target DNAs. This conjugation route is potentially versatile, as altering the reactivity of the peptide linker may allow targeting of different functional groups such as amines and facilitate self-assembly of other nanoparticle-biomolecule structures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.