We propose a field theoretic framework for calculating the dependence of Rényi entropies on the shape of the entangling surface in a conformal field theory. Our approach rests on regarding the corresponding twist operator as a conformal defect and in particular, we define the displacement operator which implements small local deformations of the entangling surface. We identify a simple constraint between the coefficient defining the two-point function of the displacement operator and the conformal weight of the twist operator, which consolidates a number of distinct conjectures on the shape dependence of the Rényi entropy. As an example, using this approach, we examine a conjecture regarding the universal coefficient associated with a conical singularity in the entangling surface for CFTs in any number of spacetime dimensions. We also provide a general formula for the second order variation of the Rényi entropy arising from small deformations of a spherical entangling surface, extending Mezei's results for the entanglement entropy.
This is a compact review of recent results on supersymmetric Wilson loops in ABJ(M) and related theories. It aims to be a quick introduction to the state of the art in the field and a discussion of open problems. It is divided into short chapters devoted to different questions and techniques. Some new results, perspectives and speculations are also presented. We hope this might serve as a baseline for further studies of this topic. Prepared for submission to J. Phys. A.
Abstract:We study operator insertions into 1/2 BPS Wilson loops in N = 6 ABJM theory and investigate their two-point correlators. In this framework, the energy emitted by a heavy moving probe can be exactly obtained from some two-point coefficients of bosonic and fermionic insertions. This allows us to confirm an early proposal [1] for computing the Bremsstrahlung function in terms of certain supersymmetric circular Wilson loops, whose value might be accessible to localization techniques. In the derivation of this result we also elucidate the structure of protected multiplets in the relevant superconformal defect theory and perform an explicit two-loop calculation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.