Simulation models are extensively used to predict agricultural productivity and greenhouse gas emissions. However, the uncertainties of (reduced) model ensemble simulations have not been assessed systematically for variables affecting food security and climate change mitigation, within multi-species agricultural contexts. We report an international model comparison and benchmarking exercise, showing the potential of multi-model ensembles to predict productivity and nitrous oxide (N O) emissions for wheat, maize, rice and temperate grasslands. Using a multi-stage modelling protocol, from blind simulations (stage 1) to partial (stages 2-4) and full calibration (stage 5), 24 process-based biogeochemical models were assessed individually or as an ensemble against long-term experimental data from four temperate grassland and five arable crop rotation sites spanning four continents. Comparisons were performed by reference to the experimental uncertainties of observed yields and N O emissions. Results showed that across sites and crop/grassland types, 23%-40% of the uncalibrated individual models were within two standard deviations (SD) of observed yields, while 42 (rice) to 96% (grasslands) of the models were within 1 SD of observed N O emissions. At stage 1, ensembles formed by the three lowest prediction model errors predicted both yields and N O emissions within experimental uncertainties for 44% and 33% of the crop and grassland growth cycles, respectively. Partial model calibration (stages 2-4) markedly reduced prediction errors of the full model ensemble E-median for crop grain yields (from 36% at stage 1 down to 4% on average) and grassland productivity (from 44% to 27%) and to a lesser and more variable extent for N O emissions. Yield-scaled N O emissions (N O emissions divided by crop yields) were ranked accurately by three-model ensembles across crop species and field sites. The potential of using process-based model ensembles to predict jointly productivity and N O emissions at field scale is discussed.
Biogeochemical simulation models are important tools for describing and quantifying the contribution of agricultural systems to C sequestration and GHG source/sink status. The abundance of simulation tools developed over recent decades, however, creates a difficulty because predictions from different models show large variability. Discrepancies between the conclusions of different modelling studies are often ascribed to differences in the physical and biogeochemical processes incorporated in equations of C and N cycles and their interactions. Here we review the literature to determine the state-of-the-art in modelling agricultural (crop and grassland) systems. In order to carry out this study, we selected the range of biogeochemical models used by the CN-MIP consortium of FACCE-JPI (http://www.faccejpi.com): APSIM, CERES-EGC, DayCent, DNDC, DSSAT, EPIC, PaSim, RothC and STICS. In our analysis, these models were assessed for the quality and comprehensiveness of underlying processes related to pedo-climatic conditions and management practices, but also with respect to time and space of application, and for their accuracy in multiple contexts. Overall, it emerged that there is a possible impact of ill-defined pedo-climatic conditions in the unsatisfactory performance of the models (46.2%), followed by limitations in the algorithms simulating the effects of management practices (33.1%). The multiplicity of scales in both time and space is a fundamental feature, which explains the remaining weaknesses (i.e. 20.7%). Innovative aspects have been identified for future development of C and N models. They include the explicit representation of soil microbial biomass to drive soil organic matter turnover, the effect of N shortage on SOM decomposition, the improvements related to the production and consumption of gases and an adequate simulations of gas transport in soil. On these bases, the assessment of trends and gaps in the modelling approaches currently employed to represent biogeochemical cycles in crop and grassland systems appears an essential step for future research.
Covid19-induced lockdown measures caused modifications in atmospheric pollutant and greenhouse gas emissions. Urban road traffic was the most impacted, with 48–60% average reduction in Italy. This offered an unprecedented opportunity to assess how a prolonged (∼2 months) and remarkable abatement of traffic emissions impacted on urban air quality. Six out of the eight most populated cities in Italy with different climatic conditions were analysed: Milan, Bologna, Florence, Rome, Naples, and Palermo. The selected scenario (24/02/2020–30/04/2020) was compared to a meteorologically comparable scenario in 2019 (25/02/2019–02/05/2019). NO 2 , O 3 , PM 2.5 and PM 10 observations from 58 air quality and meteorological stations were used, while traffic mobility was derived from municipality-scale big data. NO 2 levels remarkably dropped over all urban areas (from −24.9% in Milan to −59.1% in Naples), to an extent roughly proportional but lower than traffic reduction. Conversely, O 3 concentrations remained unchanged or even increased (up to 13.7% in Palermo and 14.7% in Rome), likely because of the reduced O 3 titration triggered by lower NO emissions from vehicles, and lower NO x emissions over typical VOCs-limited environments such as urban areas, not compensated by comparable VOCs emissions reductions. PM 10 exhibited reductions up to 31.5% (Palermo) and increases up to 7.3% (Naples), while PM 2.5 showed reductions of ∼13–17% counterbalanced by increases up to ∼9%. Higher household heating usage (+16–19% in March), also driven by colder weather conditions than 2019 (−0.2 to −0.8 °C) may partly explain primary PM emissions increase, while an increase in agriculture activities may account for the NH 3 emissions increase leading to secondary aerosol formation. This study confirmed the complex nature of atmospheric pollution even when a major emission source is clearly isolated and controlled, and the need for consistent decarbonisation efforts across all emission sectors to really improve air quality and public health.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.