We present broad-band photometry of 30 planetary transits of the ultra-hot Jupiter KELT-16 b, using five medium-class telescopes. The transits were monitored through standard B, V, R, I filters and four were simultaneously observed from different places, for a total of 36 new light curves. We used these new photometric data and those from the TESS space telescope to review the main physical properties of the KELT-16 planetary system. Our results agree with previous measurements but are more precise. We estimated the mid-transit times for each of these transits and combined them with others from the literature to obtain 69 epochs, with a time baseline extending over more than four years, and searched for transit time variations. We found no evidence for a period change, suggesting a lower limit for orbital decay at 8 Myr, with a lower limit on the reduced tidal quality factor of $Q^{\prime }_{\star }>(1.9 \pm 0.8) \times 10^5$ with $95\%$ confidence. We built up an observational, low-resolution transmission spectrum of the planet, finding evidence of the presence of optical absorbers, although with a low significance. Using TESS data, we reconstructed the phase curve finding that KELT-16 b has a phase offset of 25.25 ± 14.03 ○E, a day- and night-side brightness temperature of 3190 ± 61 K and 2668 ± 56 K, respectively. Finally, we compared the flux ratio of the planet over its star at the TESS and Spitzer wavelengths with theoretical emission spectra, finding evidence of a temperature inversion in the planet’s atmosphere, the chemical composition of which is preferably oxygen-rich rather than carbon-rich.
We present a photometric follow-up of transiting exoplanets HAT-P-3b and TrES-3b, observed by using several optical and near-infrared filters, with four small-class telescopes (D = 36-152cm) in the Northern Hemisphere. Two of the facilities present their first scientific results. New 10 HAT-P-3b light curves and new 26 TrES-3b light curves are reduced and combined by filter in order to improve the quality of the photometry. Combined light curves fitting is carried out independently by using two different analysis packages, allowing the corroboration of the orbital and physical parameters in the literature. Results find no differences in the relative radius with the observing filter. In particular, we report for HAT-P-3b a first estimation of the planet-to-star radius R p /R * = 0.1112 +0.0025 −0.0026 in the B band which is coherent with values found in the V RIz JH filters. Concerning TrES-3b, we derive a value for the orbital period of P = 1.3061862 ± 0.0000001 days which shows no linear variations over nine years of photometric observations.
Atmospheric mass loss plays a major role in the evolution of exoplanets. This process is driven by the stellar high-energy irradiation, especially in the first hundreds of millions of years after dissipation of the proto-planetary disk. A major source of uncertainty in modeling atmospheric photoevaporation and photochemistry is due to the lack of direct measurements of the stellar flux at extreme-UV (EUV) wavelengths. Several empirical relationships have been proposed in the past to link EUV fluxes to emission levels in X-rays, but the stellar samples employed for this aim are heterogeneous, and the available scaling laws provide significantly different predictions, especially for very active stars. We present new far-UV and X-ray observations of V1298 Tau with Hubble Space Telescope/Cosmic Origins Spectrograph and XMM-Newton, aimed to determine more accurately the high-energy emission of this solar-mass pre-main-sequence star, which hosts four exoplanets. Spectroscopic data were employed to derive the plasma emission measure distribution versus temperature, from the chromosphere to the corona, and the possible variability of this irradiation on short and year-long timescales, due to magnetic activity. As a side result, we have also measured the chemical abundances of several elements in the outer atmosphere of V1298 Tau. We employ our results as a new benchmark point for the calibration of the X-ray to EUV scaling laws, and hence to predict the time evolution of the irradiation in the EUV band, and its effect on the evaporation of exo-atmospheres.
We present the progresses of the simulation tools, the Exposure Time Calculator (ETC) and End-to-End simulator (E2E), for the Son Of X-Shooter (SOXS) instrument at the ESO-NTT 3.58-meter telescope. The SOXS will be a single object spectroscopic facility, made by a two-arms high-efficiency spectrograph, able to cover the spectral range 350-2000 nanometer with a mean resolving power R≈4500. While the purpose of the ETC is the estimate, to the best possible accuracy, of the Signal-to-Noise ratio (SNR), the E2E model allows us to simulate
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.