Pyrolysis seems a promising route for recycling of heterogeneous, contaminated and additives containing plastics from waste electrical and electronic equipment (WEEE). This study deals with the thermal and catalytic pyrolysis of a synthetic mixture containing real waste plastics, representative of polymers contained in small WEEE. Two zeolite-based catalysts were used at 400°C: HUSY and HZSM-5 with a high silica content, while three different temperatures were adopted for the thermal cracking: 400, 600 and 800°C. The mass balance showed that the oil produced by pyrolysis is always the main product regardless the process conditions selected, with yields ranging from 83% to 93%. A higher yield was obtained when pyrolysis was carried out with HZSM-5 at 400°C and without catalysts, but at 600 and 800°C. Formation of a significant amount of solid residue (about 13%) is observed using HUSY. The oily liquid product of pyrolysis, analysed by GC-MS and GC-FID, as well as by elemental analysis and for energy content, appeared lighter, less viscous and with a higher concentration of monoaromatics under catalytic condition, if compared to the liquid product derived from thermal degradation at the same temperature. HZSM-5 led to the production of a high yield of styrene (17.5%), while HUSY favoured the formation of ethylbenzene (15%). Energy released by combustion of the oil was around 39MJ/kg, thus suggesting the possibility to exploit it as a fuel, if the recovery of chemical compounds could not be realised. Elemental and proximate analysis of char and GC-TCD analysis of the gas were also performed. Finally, it was estimated to what extent these two products, showing a relevant ability to release energy, could fulfil the energy demand requested in pyrolysis.
Seven waste thermoplastic polymers (polypropylene, polyethylene film, polyethylene terephthalate, polystyrene, acrylonitrile-butadiene-styrene, high-impact polystyrene and polybutadiene terephthalate, denoted as PP, PE (film), PET, PS, ABS, HIPS and PBT, respectively) and four synthetic mixtures thereof with different compositions representing commingled postconsumer plastic waste and waste of electrical and electronic equipment were studied by means of simultaneous thermogravimetry/differential scanning calorimetry coupled with Fourier transform infrared spectroscopy (TG/DSC-FTIR) under pyrolytic conditions (inert atmosphere). By summing all the heat change contributions due to physical and/or chemical processes occurring (i.e., melting, decomposition), an overall energy, defined as the degradation heat, was determined for both single component and their mixtures. It was found to be about 4-5 % of the exploitable energy of the input material. Vapors evolved during the pyrolysis of single-component polymers and their mixtures, analyzed using the FTIR apparatus, allowed identifying the main reaction products as monomers or fragments of the polymeric chain. Results from TG/DSC runs and FTIR analysis show that there is no interaction among the plastic components of the mixtures during the occurrence of pyrolysis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.