Magnetic skyrmions and bubbles, observed in ferromagnetic thin films with perpendicular magnetic anisotropy, are topological solitons which differ by their characteristic size and the balance in the energies at the origin of their stabilisation. However, these two spin textures have the same topology and a continuous transformation between them is allowed. In the present work, we derive an analytical model to explore the skyrmion-bubble transition. We evidence a region in the parameter space where both topological soliton solutions coexist and close to which transformations between skyrmion and bubbles are observed as a function of the magnetic field. Above a critical point, at which the energy barrier separating both solutions vanishes, only one topological soliton solution remains, which size can be continuously tuned from micrometer to nanometer with applied magnetic field. arXiv:1712.03154v3 [cond-mat.mtrl-sci]
We present a combined analytical and numerical micromagnetic study of the equilibrium energy, size and shape of anti-skyrmionic magnetic configurations. Anti-skyrmions can be stabilized when the Dzyaloshinskii-Moriya interaction has opposite signs along two orthogonal in-plane directions, breaking the magnetic circular symmetry. We compare the equilibrium energy, size and shape of anti-skyrmions and skyrmions that are stabilized respectively in environments with anisotropic and isotropic Dzyaloshinskii-Moriya interaction, but with the same strength of the magnetic interactions. When the dipolar interactions are neglected the skyrmion and the anti-skyrmion have the same energy, shape and size in their respective environment. However, when dipolar interactions are considered, the energy of the anti-skyrmion is strongly reduced and its equilibrium size increased with respect to the skyrmion. While the skyrmion configuration shows homochiral Néel magnetization rotations, anti-skyrmions show partly Néel and partly Bloch rotations. The latter do not produce magnetic charges and thus cost less dipolar energy. Both magnetic configurations are stable when the magnetic energies almost cancel each other, which means that a small variation of one parameter can drastically change their configuration, size and energy.
We have used Brillouin Light Scattering spectroscopy to independently determine the in-plane Magneto-Crystalline Anisotropy and the Dzyaloshinskii-Moriya Interaction (DMI) in out-of-plane magnetized Au/Co/W(110). We found that the DMI strength is 2-3 times larger along the bcc[001] than along the bcc[110] direction. We use analytical considerations to illustrate the relationship between the crystal symmetry of the stack and the anisotropy of microscopic DMI. Such an anisotropic DMI is the first step to realize isolated elliptical skyrmions or anti-skyrmions in thin film systems with C2v symmetry.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.