). † These authors equally contributed to this work.
SUMMARYFor almost a decade, our knowledge on the organisation of the family 1 UDP-glycosyltransferases (UGTs) has been limited to the model plant A. thaliana. The availability of other plant genomes represents an opportunity to obtain a broader view of the family in terms of evolution and organisation. Family 1 UGTs are known to glycosylate several classes of plant secondary metabolites. A phylogeny reconstruction study was performed to get an insight into the evolution of this multigene family during the adaptation of plants to life on land. The organisation of the UGTs in the different organisms was also investigated. More than 1500 putative UGTs were identified in 12 fully sequenced and assembled plant genomes based on the highly conserved PSPG motif. Analyses by maximum likelihood (ML) method were performed to reconstruct the phylogenetic relationships existing between the sequences. The results of this study clearly show that the UGT family expanded during the transition from algae to vascular plants and that in higher plants the clustering of UGTs into phylogenetic groups appears to be conserved, although gene loss and gene gain events seem to have occurred in certain lineages. Interestingly, two new phylogenetic groups, named O and P, that are not present in A. thaliana were discovered.
Vinblastine, a potent anticancer drug, is produced by (Madagascar periwinkle) in small quantities, and heterologous reconstitution of vinblastine biosynthesis could provide an additional source of this drug. However, the chemistry underlying vinblastine synthesis makes identification of the biosynthetic genes challenging. Here we identify the two missing enzymes necessary for vinblastine biosynthesis in this plant: an oxidase and a reductase that isomerize stemmadenine acetate into dihydroprecondylocarpine acetate, which is then deacetoxylated and cyclized to either catharanthine or tabersonine via two hydrolases characterized herein. The pathways show how plants create chemical diversity and also enable development of heterologous platforms for generation of stemmadenine-derived bioactive compounds.
Compelling evidence of the health benefits of phenolic compounds and their impact on food quality have stimulated the development of analytical methods for the identification and quantification of these compounds in different matrices in recent years. A targeted metabolomics method has been developed for the quantification of 135 phenolics, such as benzoates, phenylpropanoids, coumarins, stilbenes, dihydrochalcones, and flavonoids, in fruit and tea extracts and wine using UPLC/QqQ-MS/MS. Chromatography was optimized to achieve separation of the compounds over a period of 15 min, and MRM transitions were selected for accurate quantification. The method was validated by studying the detection and quantification limits, the linearity ranges, and the intraday and interday repeatability of the analysis. The validated method was applied to the analysis of apples, berries, green tea, and red wine, providing a valuable tool for food quality evaluation and breeding studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.