Post-cholecystectomy syndrome (PCS) is defined as a complex of heterogeneous symptoms, consisting of upper abdominal pain and dyspepsia, which recur and/or persist after cholecystectomy. Nevertheless, this term is inaccurate, as it encompasses biliary and non-biliary disorders, possibly unrelated to cholecystectomy. Biliary manifestations of PCS may occur early in the post-operative period, usually because of incomplete surgery (retained calculi in the cystic duct remnant or in the common bile duct) or operative complications, such as bile duct injury and/or bile leakage. A later onset is commonly caused by inflammatory scarring strictures involving the sphincter of Oddi or the common bile duct, recurrent calculi or biliary dyskinesia. The traditional imaging approach for PCS has involved ultrasound and/or CT followed by direct cholangiography, whereas manometry of the sphincter of Oddi and biliary scintigraphy have been reserved for cases of biliary dyskinesia. Because of its capability to provide non-invasive high-quality visualisation of the biliary tract, magnetic resonance cholangiopancreatography (MRCP) has been advocated as a reliable imaging tool for assessing patients with suspected PCS and for guiding management decisions. This paper illustrates the rationale for using MRCP, together with the main MRCP biliary findings and diagnostic pitfalls.
Coronavirus disease of 2019 (COVID-19) is a highly infectious disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which has rapidly spread to a global pandemic in March 2020. This emergency condition has been putting a severe strain on healthcare systems worldwide, and a prompt, dynamic response is instrumental in its management. While a definite diagnosis is based on microbiological evidence, the relationship between lung ultrasound (LU) and high-resolution computed tomography (HRCT) in the diagnosis and management of COVID-19 is less clear. Lung ultrasound is a point-of-care imaging tool that proved to be useful in the identification and severity assessment of different pulmonary conditions, particularly in the setting of emergency and critical care patients in intensive care units; HRCT of the thorax is regarded as the mainstay of imaging evaluation of lung disorders, enabling characterization and quantification of pulmonary involvement. Aims of this review are to describe LU and chest HRCT main imaging features of COVID-19 pneumonia, and to provide state-of-the-art insights regarding the integrated role of these techniques in the clinical decision-making process of patients affected by this infectious disease.
Severe acute respiratory coronavirus-2 syndrome (SARS-CoV-2) is a well-known pandemic infectious disease caused by an RNA virus belonging to the coronaviridae family. The most important involvement during the acute phase of infection concerns the respiratory tract and may be fatal. However, COVID-19 may become a systemic disease with a wide spectrum of manifestations. Herein, we report the natural history of sacroiliac inflammatory involvement in two females who developed COVID-19 infection with mild flu-like symptoms. After the infection they reported inflammatory back pain, with magnetic resonance imaging (MRI) studies showing typical aspects of sacroiliitis. Symptoms improved with NSAIDs therapy over the following months while MRI remained positive. A literature review was performed on this emerging topic. To our knowledge, this is the first MRI longitudinal study of post-COVID-19 sacroiliitis with almost one year of follow-up. Predisposing factors for the development of articular involvement are unclear but a long-lasting persistence of the virus, demonstrated by nasopharyngeal swab, may enhance the probability of altering the immune system in a favourable background.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.