Abstract:Humans have an innate tendency to anthropomorphize surrounding entities and have always been fascinated by the creation of machines endowed with human-inspired capabilities and traits. In the last few decades, this has become a reality with enormous advances in hardware performance, computer graphics, robotics technology, and artificial intelligence. New interdisciplinary research fields have brought forth cognitive robotics aimed at building a new generation of control systems and providing robots with social, empathetic and affective capabilities. This paper presents the design, implementation, and test of a human-inspired cognitive architecture for social robots. State-of-the-art design approaches and methods are thoroughly analyzed and discussed, cases where the developed system has been successfully used are reported. The tests demonstrated the system's ability to endow a social humanoid robot with human social behaviors and with in-silico robotic emotions.
A socially intelligent robot must be capable to extract meaningful information in real time from the social environment and react accordingly with coherent human-like behavior. Moreover, it should be able to internalize this information, to reason on it at a higher level, build its own opinions independently, and then automatically bias the decision-making according to its unique experience. In the last decades, neuroscience research highlighted the link between the evolution of such complex behavior and the evolution of a certain level of consciousness, which cannot leave out of a body that feels emotions as discriminants and prompters. In order to develop cognitive systems for social robotics with greater human-likeliness, we used an "understanding by building" approach to model and implement a well-known theory of mind in the form of an artificial intelligence, and we tested it on a sophisticated robotic platform. The name of the presented system is SEAI (Social Emotional Artificial Intelligence), a cognitive system specifically conceived for social and emotional robots. It is designed as a bio-inspired, highly modular, hybrid system with emotion modeling and high-level reasoning capabilities. It follows the deliberative/reactive paradigm where a knowledge-based expert system is aimed at dealing with the high-level symbolic reasoning, while a more conventional reactive paradigm is deputed to the low-level processing and control. The SEAI system is also enriched by a model that simulates the Damasio's theory of consciousness and the theory of Somatic Markers. After a review of similar bio-inspired cognitive systems, we present the scientific foundations and their computational formalization at the basis of the SEAI framework. Then, a deeper technical description of the architecture is disclosed underlining the numerous parallelisms with the human cognitive system. Finally, the influence of artificial emotions and feelings, and their link with the robot's beliefs and decisions have been tested in a physical humanoid involved in Human-Robot Interaction (HRI).
Robot's perception is essential for performing highlevel tasks such as understanding, learning, and in general, human-robot interaction (HRI). For this reason, different perception systems have been proposed for different robotic platforms in order to detect high-level features such as facial expressions and body gestures. However, due to the variety of robotics software architectures and hardware platforms, these highly customized solutions are hardly interchangeable and adaptable to different HRI contexts. In addition, most of the developed systems have one issue in common: they detect features without awareness of the real-world contexts (e.g., detection of environmental sound assuming that it belongs to a person who is speaking, or treating a face printed on a sheet of paper as belonging to a real subject). This paper presents a novel social perception system (SPS) that has been designed to address the previous issues. SPS is an outof-the-box system that can be integrated into different robotic platforms irrespective of hardware and software specifications. SPS detects, tracks and delivers in real-time to robots, a wide range of human-and environment-relevant features with the awareness of their real-world contexts. We tested SPS in a typical scenario of HRI for the following purposes: to demonstrate the system capability in detecting several high-level perceptual features as well as to test the system capability to be integrated into different robotics platforms. Results show the promising capability of the system in perceiving real world in different social robotics platforms, as tested in two humanoid robots i.e., FACE and ZENO.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.