Superfluidity-the suppression of scattering in a quantum fluid at velocities below a critical value-is one of the most striking manifestations of the collective behaviour typical of Bose-Einstein condensates. This phenomenon, akin to superconductivity in metals, has until now only been observed at prohibitively low cryogenic temperatures.For atoms, this limit is imposed by the small thermal de Broglie wavelength, which is inversely related to the particle mass. Even in the case of ultralight quasiparticles such as exciton-polaritons, superfluidity has only been demonstrated at liquid helium temperatures. In this case, the limit is not imposed by the mass, but instead by the small exciton binding energy of Wannier-Mott excitons, which places the upper temperature limit. Here we demonstrate a transition from normal to superfluid flow in an organic microcavity supporting stable Frenkel exciton-polaritons at room temperature. This result paves the way not only to table-top studies of quantum hydrodynamics, but also to room-temperature polariton devices that can be robustly protected from scattering.
Polaritonic devices exploit the coherent coupling between excitonic and photonic degrees of freedom to perform highly nonlinear operations with low input powers. Most of the current results exploit excitons in epitaxially grown quantum wells and require low-temperature operation, while viable alternatives have yet to be found at room temperature. We show that large single-crystal flakes of two-dimensional layered perovskite are able to sustain strong polariton nonlinearities at room temperature without the need to be embedded in an optical cavity formed by highly reflecting mirrors. In particular, exciton-exciton interaction energies are shown to be spin dependent, remarkably similar to the ones known for inorganic quantum wells at cryogenic temperatures, and more than one order of magnitude larger than alternative room temperature polariton devices reported so far. Because of their easy fabrication, large dipolar oscillator strengths, and strong nonlinearities, these materials pave the way for realization of polariton devices at room temperature.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.