Radiotherapy with very high energy electrons has been investigated for a couple of decades as an effective approach to improve dose distribution compared to conventional photon-based radiotherapy, with the recent intriguing potential of high dose-rate irradiation. Its practical application to treatment has been hindered by the lack of hospital-scale accelerators. High-gradient laser-plasma accelerators (LPA) have been proposed as a possible platform, but no experiments so far have explored the feasibility of a clinical use of this concept. We show the results of an experimental study aimed at assessing dose deposition for deep seated tumours using advanced irradiation schemes with an existing LPA source. Measurements show control of localized dose deposition and modulation, suitable to target a volume at depths in the range from 5 to 10 cm with mm resolution. The dose delivered to the target was up to 1.6 Gy, delivered with few hundreds of shots, limited by secondary components of the LPA accelerator. Measurements suggest that therapeutic doses within localized volumes can already be obtained with existing LPA technology, calling for dedicated pre-clinical studies.
The construction of a novel Laser driven Light Ions Acceleration Line (L3IA) is progressing rapidly towards the operation, following the recent upgrade of the ILIL-PW laser facility. The Line was designed following the pilot experimental activity carried out earlier at the same facility to define design parameters and to identify main components including target control and diagnostic equipment, also in combination with the numerical simulations for the optimization of laser and target parameters. A preliminary set of data was acquired following the successful commissioning of the laser system >100 TW upgrade. Data include output from a range of different ion detectors and optical diagnostics installed for qualification of the laser-target interaction. An overview of the results is given along with a description of the relevant upgraded laser facility and features.
There is an emerging interest in small natural molecules for their potential therapeutic use in neurodegenerative disorders like Alzheimer's disease (AD). Ferulic acid (FA), an antioxidant phenolic compound present in fruit and vegetables, has been proposed as an inhibitor of beta amyloid (Aβ) pathological aggregation. Using fluorescence and Fourier transform infrared spectroscopy, electrophoresis techniques, chromatographic analysis, and confocal microscopy, we investigated the effects of FA in the early stages of Aβ fibrillogenesis in vitro. Our results show that FA interacts promptly with Aβ monomers/oligomers, interfering since the beginning with its self-assembly and finally forming amorphous aggregates more prone to destabilization. These findings highlight the molecular basis underlying FA antiamyloidogenic activity in AD.
One of the most interesting research fields in laser-matter interaction studies is the investigation of effects and mechanisms produced by nano-or micro-structured targets, mainly devoted to the enhancing of laser-target or laser-plasma coupling. In intense and ultra-intense laser interaction regimes, the observed enhancement of x-ray plasma emission and/or hot electron conversion efficiency is explained by a variety of mechanisms depending on the dimensions and shape of the structures irradiated. In the present work, the attention is mainly focused on the lowering of the plasma formation threshold which is induced by the larger absorptivity.Flat and nanostructured silicon targets were here irradiated with an ultrashort laser pulse, in the range 1 × 10 17 -2 × 10 18 W µm 2 cm −2 . The effects of structures on laser-plasma coupling were investigated at different laser pulse polarizations, by utilizing x-ray yield and 3/2ω harmonics emission. While the measured enhancement of x-ray emission is negligible at intensities larger than 10 18 W µm 2 cm −2 , due to the destruction of the structures by the amplified spontaneous emission (ASE) pre-pulse, a dramatic enhancement, strongly dependent on pulse polarization, was observed at intensities lower than ∼3.5 × 10 17 W µm 2 cm −2 . Relying on the three-halves harmonic emission and on the non-isotropic character of the x-ray yield, induced by the two-plasmon decay instability, the results are explained by the significant lowering of the plasma threshold produced by the nanostructures. In this view, the strong x-ray enhancement obtained by s-polarized pulses is produced by the interaction of the laser pulse with the preplasma, resulting from the interaction of the ASE pedestal with the nanostructures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.