A complex screen is an arrangement of panels that may not be even locally orientable because of junction lines. A comprehensive trace space framework for first-kind variational boundary integral equations on complex screens has been established in Claeys and Hiptmair (Integr Equ Oper Theory 77:167–197, 2013. https://doi.org/10.1007/s00020-013-2085-x) for the Helmholtz equation, and in Claeys and Hiptmair (Integr Equ Oper Theory 84:33–68, 2016. https://doi.org/10.1007/s00020-015-2242-5) for Maxwell’s equations in frequency domain. The gist is a quotient space perspective that allows to make sense of jumps of traces as factor spaces of multi-trace spaces modulo single-trace spaces without relying on orientation. This paves the way for formulating first-kind boundary integral equations in weak form posed on energy trace spaces. In this article we extend that idea to the Galerkin boundary element (BE) discretization of first-kind boundary integral equations. Instead of trying to approximate jumps directly, the new quotient space boundary element method employs a Galerkin BE approach in multi-trace boundary element spaces. This spawns discrete boundary integral equations with large null spaces comprised of single-trace functions. Yet, since the right-hand-sides of the linear systems of equations are consistent, Krylov subspace iterative solvers like GMRES are not affected by the presence of a kernel and still converge to a solution. This is strikingly confirmed by numerical tests.
Perfectly-Matched Layers (PML) are widely used in Particle-In-Cell simulations, in order to absorb electromagnetic waves that propagate out of the simulation domain. However, when charged particles cross the interface between the simulation domain and the PMLs, a number of numerical artifacts can arise. In order to mitigate these artifacts, we introduce a new PML algorithm whereby the current deposited by the macroparticles in the PML is damped by an analytically-derived, optimal coefficient. The benefits of this new algorithm is illustrated in practical simulations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.