The application of image-guided systems with or without support by surgical robots relies on the accuracy of the navigation process, including patient-to-image registration. The surgeon must carry out the procedure based on the information provided by the navigation system, usually without being able to verify its correctness beyond visual inspection. Misleading surrogate parameters such as the fiducial registration error are often used to describe the success of the registration process, while a lack of methods describing the effects of navigation errors, such as those caused by tracking or calibration, may prevent the application of image guidance in certain accuracy-critical interventions. During minimally invasive mastoidectomy for cochlear implantation, a direct tunnel is drilled from the outside of the mastoid to a target on the cochlea based on registration using landmarks solely on the surface of the skull. Using this methodology, it is impossible to detect if the drill is advancing in the correct direction and that injury of the facial nerve will be avoided. To overcome this problem, a tool localization method based on drilling process information is proposed. The algorithm estimates the pose of a robot-guided surgical tool during a drilling task based on the correlation of the observed axial drilling force and the heterogeneous bone density in the mastoid extracted from 3-D image data. We present here one possible implementation of this method tested on ten tunnels drilled into three human cadaver specimens where an average tool localization accuracy of 0.29 mm was observed.
Abstract-A technical challenge in hyperthermia therapy is to locally heat the tumor region up to an appropriate temperature to destroy cancerous cells, without damaging the surrounding healthy tissue. Magnetic fluid hyperthermia (MFH) is a novel, minimally invasive therapy aiming at concentrating heat inside cancerous tissues. This therapy is based on the injection of different superparamagnetic nanoparticles inside the tumor. In our study, superparamagnetic nanoparticles, which we developed and characterized, consisted of iron oxide nanoparticles stabilized with polyethylene glycol. Moreover, a new technique for MFH using a specially designed external electromagnetic waveguide as applicator is presented. Three magnetite concentrations were used for making the tumor phantoms, which were embedded in muscle phantoms. The phantoms were radiated and located at three different distances from the applicator. Furthermore, two volumes of tumor (2.5 mL and 5.0 mL) were assayed. Heating curves, as a function of time, allowed the establishment of a more appropriate nanoparticle concentration for obtaining the temperature increase suitable for hyperthermia therapy. The results shown in this
Hyperthermia also called thermal therapy or thermotherapy is a type of cancer treatment in which body tissue is exposed to high temperatures. Research has shown that high temperatures can damage and kill cancer cells, usually with minimal injury to normal tissues. Otherwise, ablation or high temperature hyperthermia, including lasers and the use of radiofrequency, microwaves, and high-intensity focused ultrasound, are gaining attention as an alternative to standard surgical therapies. The electromagnetic microwave irradiation applied to the tumor tissue causes water molecules to vibrate and rotate, resulting in tissue heating and subsequently cell death via thermal-induced protein denaturation. The effectiveness of this technique is related to the temperature achieved during the therapy, as well as the length time of treatment and cell and tissue characteristics. Numerical electromagnetic and thermal simulations are used to optimize the antenna design and predict heating patterns. A computer modeling of a double slot antenna for interstitial hyperthermia was designed using two different numerical methods, the Finite Element Method and a Finite-Difference Time-Domain. The aim of this work is to analyze both numerical methods and finally experiments results are compared to the simulated results generated by a thermal model. Our results show that normalized SAR patterns using FEM and FDTD look broadly similar. Furthermore, the computed 60 °C isotherm using FEM and the measured lesion diameter in ex vivo tissue results agree very well.
Breast cancer represents a rising problem concerning public health worldwide. Current efforts are aimed to the development of new minimally invasive and conservative treatment procedures for this disease. A treatment approach for invasive breast ductal carcinoma could be based on electroporation. Hence, in order to determine the effectiveness of electrochemotherapy in the treatment of this disease, 12 electrode models were investigated on realistic patient-specific computational breast models of 3 patients diagnosed by Digital Breast Tomosynthesis imaging. The electrode models exhibit 4, 5, and 6 needles arranged in 4 geometric configurations (delta, diamond, and star) and 3 different needle spacing resulting in a total of 12 needle-electrode arrays. Electric field distribution in the tumors and a surrounding safety margin of 1 cm around the tumor edge is computed using the finite element method. Efficiency of the electrode arrays was determined hierarchically based on (1) percentage of tumor volume reversibly electroporated, (2) percentage of tumor volume irreversibly electroporated, (3) percentage of treated safety margin volume, (4) minimal invasiveness, that is, minimal number of electrodes used, (5) minimal activated electrode pairs, and (6) minimal electric current. Results show that 3 electrode arrays (4 needle-delta, 5 needle-diamond, and 6 needle-star) with fixed-geometry configuration could be used in the treatment with electrochemotherapy of invasive breast ductal carcinomas ranging from 1 to 5 cm3 along with a surrounding safety margin of 1 cm.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.