Magnetohydrodynamic (MHD) phenomena, due to the interaction between a magnetic field and a moving electro-conductive fluid, are crucial for the design of magnetic-confinement fusion reactors and, specifically, for the design of the breeding blanket concepts that adopt liquid metals (LMs) as working fluids. Computational tools are employed to lead fusion-relevant physical analysis, but a dedicated MHD code able to simulate all the phenomena involved in a blanket is still not available and there is a dearth of systems code featuring MHD modelling capabilities. In this paper, models to predict both 2D and 3D MHD pressure drop, derived by experimental and numerical works, have been implemented in the thermal-hydraulic system code RELAP5/MOD3.3 (RELAP5). The verification and validation procedure of the MHD module involves the comparison of the results obtained by the code with those of direct numerical simulation tools and data obtained by experimental works. As relevant examples, RELAP5 is used to recreate the results obtained by the analysis of two test blanket modules: Lithium Lead Ceramic Breeder and Helium-Cooled Lithium Lead. The novel MHD subroutines are proven reliable in the prediction of the pressure drop for both simple and complex geometries related to LM circuits at high magnetic field intensity (error range ±10%).
In fusion reactor development, the design of the breeding blanket (BB) represents an important technical challenge due to the extreme operative conditions that the component must withstand. One of the critical issues of a liquid metal BB is the occurring of magnetohydrodynamic (MHD) effects within the piping network that transports the electro-conductive fluid. Predicting MHD phenomena is fundamental for a reliable and efficient blanket design and computational tools are indispensable to achieve a fusion-relevant physical analysis. For this reason, a dedicated MHD module for the System Thermal-Hydraulic (STH) code RELAP5/MOD3.3 (RELAP5) is under development at Sapienza University of Rome. In its current state, RELAP5 can evaluate MHD pressure losses in many common layouts for BB piping system. In a previous work of the Authors, the verification and validation (V&V) procedure of the MHD module has been discussed. In this paper, the code is used to assess the MHD pressure loss in the Water-Cooled Lithium Lead Test Blanket Module (TBM). Furthermore, the geometry of the TBM box is optimized to reduce the MHD pressure loss and to equalize the flow distribution among the Breeding Units.
Despite system thermal-hydraulic codes were extensively validated for transient simulations of LWR, several activities highlighted limited capabilities of these tools to model heat transfer within in-pool passive power removal system. Discrepancies with experimental results were related to the underestimate of pool boiling and film condensation heat transfer coefficients. Thus, the DIAEE of "Sapienza" University of Rome developed a modified version of RELAP5/Mod3.3, able to handle fundamental heat exchange phenomena involved in passive in-pool safety systems. A primary validation procedure has been performed for separated and integral effects. Dealing with nucleate boiling, the Root Mean Squared Relative Error (RMSRE) of wall superheat has been reduced from 1.290 to 0.182. Concerning film condensation, wall temperature RMSRE has been reduced from 0.192 to 0.058. The integral effect assessment has involved an experimental test of the PERSEO facility. The qualitative comparison between experiments and calculations has highlighted significant improvements of the modified RELAP5/Mod3.3.
The water-cooled lead lithium breeding blanket (WCLL BB) is one of two BB candidate concepts to be chosen as the driver blanket of the EU-DEMO fusion reactor. Research activities carried out in the past decade, under the umbrella of the EUROfusion consortium, have allowed a quite advanced reactor architecture to be achieved. Moreover, significant efforts have been made in order to develop the WCLL BB pre-conceptual design following a holistic approach, identifying interfaces between components and systems while respecting a system engineering approach. This paper reports a description of the current WCLL BB architecture, focusing on the latest modifications in the BB reference layout aimed at evolving the design from its pre-conceptual version into a robust conceptual layout. In particular, the main rationale behind design choices and the BB’s overall performances are highlighted. The present paper also gives an overview of the integration between the BB and the different in-vessel systems interacting with it. In particular, interfaces with the tritium extraction and removal (TER) system and the primary heat transfer system (PHTS) are described. Attention is also paid to auxiliary systems devoted to heat the plasma, such as electron cyclotron heating (ECH). Indeed, the integration of this system in the BB will strongly impact the segment design since it envisages the introduction of significant cut-outs in the BB layout. A preliminary CAD model of the central outboard blanket (COB) segment housing the ECH cut-out has been set up and is reported in this paper. The chosen modeling strategy, adopted loads and boundary conditions, as well as obtained results, are reported in the paper and critically discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.