Your article is protected by copyright and all rights are held exclusively by Springer Nature B.V.. This e-offprint is for personal use only and shall not be self-archived in electronic repositories. If you wish to self-archive your article, please use the accepted manuscript version for posting on your own website. You may further deposit the accepted manuscript version in any repository, provided it is only made publicly available 12 months after official publication or later and provided acknowledgement is given to the original source of publication and a link is inserted to the published article on Springer's website. The link must be accompanied by the following text: "The final publication is available at link.springer.com".
We construct and study solitonic representations of the conformal net associated to some vacuum Positive Energy Representation (PER) of a loop group LG. For the corresponding solitonic states, we prove the Quantum Null Energy Condition (QNEC) and the Bekenstein Bound. As an intermediate result, we show that a Positive Energy Representation of a loop group LG can be extended to a PER of $$H^{s}(S^1,G)$$ H s ( S 1 , G ) for $$s>3/2$$ s > 3 / 2 , where G is any compact, simple and simply connected Lie group. We also show the existence of the exponential map of the semidirect product $$LG \rtimes R$$ L G ⋊ R , with R a one-parameter subgroup of $$\mathrm{Diff}_+(S^1)$$ Diff + ( S 1 ) , and we compute the adjoint action of $$H^{s+1}(S^1,G)$$ H s + 1 ( S 1 , G ) on the stress energy tensor.
In the framework of Algebraic Quantum Field Theory, several operator algebraic notions of entanglement entropy can be associated to any couple of causally disjoint and distant spacetime regions SA and SB. In this work we show that the mutual information is finite in any local QFT verifying a modular p-nuclearity condition for some 0 < p < 1. A similar result is proved for another recently studied entanglement measure. Furthermore, if we assume conformal covariance then by comparison with other entanglement measures we can state that the mutual information satisfies lower bounds of area law type when the distance between SA and SB approaches to zero. As application, in 1 + 1-dimensional integrable models with factorizing S-matrices we study the asymptotic behavior of different entanglement measures as the distance between two causally disjoint wedges diverges.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.