Real-time sensing of chemical warfare agents (CWAs) is, today, a crucial topic to prevent lethal effects of a chemical terroristic attack. For this reason, the development of efficient, selective, sensitive, and reversible sensoristic devices, which are able to detect by optical response the ppm levels of these compounds, both in water and in air, is strongly required. Here, we report the design and synthesis of a fluorescent nanosensor, based on carbon nanoparticles covalently functionalized with ethanolamine arms, which exploits the multitopic supramolecular interaction with nerve agents, ensuring highly efficient (log K 6.46) and selective molecular recognition. Moreover, given the aqueous dispersibility of carbon nanoparticles, these nanosensors ensure even higher sensitivity, detecting sub-ppt concentration of nerve agents in water, and subppm level in air by using a common digital camera or a smartphone. Our results pave the way to an innovative class of low-cost reusable CWA sensors, prompting, for the first time, the simultaneous detection of nerve agents through gaseous and aqueous media, thus extending the protection range to public water supplies.
Graphene oxide (GO) nanosheets with different content in the defective carbon species bound to oxygen sp3 were functionalized with the angiogenin (ANG) protein, to create a novel nanomedicine for modulating angiogenic processes in cancer therapies. The GO@ANG nanocomposite was scrutinized utilizing UV-visible and fluorescence spectroscopies. GO exhibits pro- or antiangiogenic effects, mostly attributed to the disturbance of ROS concentration, depending both on the total concentration (i.e., >100 ng/mL) as well as on the number of carbon species oxidized, that is, the C/O ratio. ANG is considered one of the most effective angiogenic factors that plays a vital role in the angiogenic process, often in a synergic role with copper ions. Based on these starting hypotheses, the GO@ANG nanotoxicity was assessed with the MTT colorimetric assay, both in the absence and in the presence of copper ions, by in vitro cellular experiments on human prostatic cancer cells (PC-3 line). Laser confocal microscopy (LSM) cell imaging evidenced an enhanced internationalization of GO@ANG than bare GO nanosheets, as well as significant changes in cell cytoskeleton organization and mitochondrial staining compared to the cell treatments with free ANG.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.